scholarly journals Malformations of the gill filaments of the ruffe Gymnocephalus cernuus (L.) (Pisces) caused by echinostomatid metacercariae

2016 ◽  
Vol 39 (11) ◽  
pp. 1357-1367 ◽  
Author(s):  
K Molnár ◽  
D I Gibson ◽  
G Majoros ◽  
C Székely ◽  
D Sándor ◽  
...  

Author(s):  
Mohinder S. Jarial

The axolotl is a strictly aquatic salamander in which the larval external gills are retained throughout life. The external gills of the adult axolotl have been studied by light and electron microscopy for ultrastructural evidence of ionic transport. The thin epidermis of the gill filaments and gill stems is composed of 3 cell types: granular cells, the basal cells and a sparce population of intervening Leydig cells. The gill epidermis is devoid of muscles, and no mitotic figures were observed in any of its cells.The granular cells cover the gill surface as a continuous layer (Fig. 1, G) and contain secretory granules of different forms, located apically (Figs.1, 2, SG). Some granules are found intimately associated with the apical membrane while others fuse with it and release their contents onto the external surface (Fig. 3). The apical membranes of the granular cells exhibit microvilli which are covered by a PAS+ fuzzy coat, termed “glycocalyx” (Fig. 2, MV).





This study concentrated on the assessment of the prevailing parasitic fish diseases in some marine fishes at Ismailia province and how to control the infestation using microalgae. This study was carried out on 1080 pre-mature fish (360 D. labrax (225±25 g) and 360 S aurata (150±25 g) and 360 M. cephalus (125±25 g) collected from similar ponds of studies to be examined at the end of treatment. In addition to that we followed non-treated fish (1080 premature). The infested fish showed dark colour and respiratory signs. Post mortem lesions were a presence of congestion or paleness and destruction of gill filaments. The total prevalence of infestation was the total prevalence of parasitic infection of non-treated fishes was 45.83 %. The highest percentage was in D. labrax 56.94 % followed by S. aurata 47.22%, the lowest percentage in M. cephalus 33.33. The total prevalence of parasitic infection in premature treated with 2 g algae was 28.79%, followed by 3 g algae was 23.60 %, while the lowest percentage with 5 g algae was 20.37 % respectively. The detected species of parasites were protozoal parasites, Amyloodinium ocellatum and Riboscyphidia in additions of marine monogenea, Lamellodiscus diplodicus isolated from D Labrex, Mugil Cephalus and S aurata. The present study concluded that, the use of microalgae instead of fish meal decreased parasitic infestation in marine fish. The histopathological alteration of natural infested examined fishes was also recorded.



Author(s):  
Ж. Н. Дугаров ◽  
М. Д. Батуева ◽  
Т. Г. Бурдуковская ◽  
Д. Р. Балданова ◽  
О. Е. Мазур ◽  
...  


1987 ◽  
Vol 65 (5) ◽  
pp. 1275-1281 ◽  
Author(s):  
George W. Benz ◽  
Kevin S. Dupre

Five blue sharks (Prionace glauca) were examined for gill-infesting copepods. Three species of siphonostomatoid copepods were collected: Gangliopus pyriformis, Phyllothyreus cornutus, and Kroyeria carchariaeglauci. The spatial distribution of K. carchariaeglauci was analyzed. The number of K. carchariaeglauci per shark was positively related to gill surface area and host size. Copepods were unevenly distributed amongst hemibranchs; flanking hemibranchs could be arranged into three statistically homogeneous groups. Female K. carchariaeglauci typically attached themselves within the middle 40% of each hemibranch; males were more evenly dispersed. Eighty percent of all K. carchariaeglauci attached themselves to secondary lamellae, the remainder were in the underlying excurrent water channels. Most K. carchariaeglauci were located between 10 and 25 mm along the lengths of gill filaments. Overall, the spatial distribution of K. carchariaeglauci was quite specific in all study planes. Explanation of this distribution is set forth in terms of natural selection pressures; however, the equally plausible explanation that the distribution pattern exhibited by these copepods is phylogenetically determined and may have little to do with contemporary selective constraints should not be ignored.





2004 ◽  
Vol 139 (1) ◽  
pp. 1-11 ◽  
Author(s):  
P.W. Sorensen ◽  
C.A. Murphy ◽  
K. Loomis ◽  
P. Maniak ◽  
P. Thomas


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eko Harianto ◽  
Eddy Supriyono ◽  
Tatag Budiardi ◽  
Ridwan Affandi ◽  
Yani Hadiroseyani

AbstractThe water level in the cultivation of eel (Anguilla bicolor bicolor) is an important study in order to provide the optimal water level for cultivation. Optimizing the water level will affect the substitution of respiration energy with energy to grow. In addition, the water level information is related to the efficiency of water use for eel production in the future. Information on water level for eel production is still very limited, so this research is necessary to do. A total of 120 eel elver (initial weight 13.66 ± 0.09 g) were collected from eel companies in Bogor City, Indonesia. Fish were reared in vertical aquaculture systems with a stocking density of 10 fish per container for 60 days. The artificial feed containing 55% protein given as much as 3–5% of the biomass. Absorption and water replacement were done 20% per day. The result of this research showed that fish weight increased with an average of 33.45 ± 0.33 g. Different water levels had an impact to KKb, SGOT, ALP, and He. There was erosion of the skin epidermis and necrosis of the gill filaments due to the adaptation process. Water quality was within the optimum range for all treatments and 1.5 cm water level is recommended for maintenance (SGOT, ALP and He values were closest to normal values).



2000 ◽  
Vol 203 (10) ◽  
pp. 1523-1537 ◽  
Author(s):  
M. Fletcher ◽  
S.P. Kelly ◽  
P. Part ◽  
M.J. O'Donnell ◽  
C.M. Wood

A new double-seeded insert (DSI) technique is described for culture of branchial epithelial preparations from freshwater rainbow trout on filter supports. DSI epithelia contain both pavement cells and mitochondria-rich (MR) cells (15.7+/−2.5 % of total cell numbers). MR cells occur singly or in clusters, are voluminous, open apically to the ‘external environment’ and exhibit ultrastructural characteristics similar to those found in the ‘chloride cells’ of freshwater fish gills. After 6–9 days in culture with Leibovitz's L-15 medium on both surfaces (symmetrical conditions), transepithelial resistance (TER) stabilized at values as high as 34 k capomega cm(2), indicative of electrically ‘tight’ epithelia. The density of MR cells, the surface area of their clusters and transepithelial potential (TEP; up to +8 mV basolateral positive, mean +1.9+/−0.2 mV) were all positively correlated with TER. In contrast, preparations cultured using an earlier single-seeded insert (SSI) technique contained only pavement cells and exhibited a negligible TEP under symmetrical conditions. Na(+)/K(+)-ATPase activities of DSI preparations were comparable with those in gill filaments, but did not differ from those of SSI epithelia. Replacement of the apical medium with fresh water to mimic the in vivo situation (asymmetrical conditions) induced a negative TEP (−6 to −15 mV) and increased permeability to the paracellular marker PEG-4000. Under symmetrical conditions, unidirectional Na(+) and Cl(−) fluxes were in balance, and there was no active transport by the Ussing flux ratio criterion. Under asymmetrical conditions, there were large effluxes, small influxes and evidence for active Cl(−) uptake and Na(+) extrusion. Unidirectional Ca(2+) fluxes were only 0.5-1.0 % of Na(+) and Cl(−) fluxes; active net Ca(2+) uptake occurred under symmetrical conditions and active net extrusion under asymmetrical conditions. Thus, DSI epithelia exhibit some of the features of the intact gill, but improvements in culture conditions are needed before the MR cells will function as true freshwater ‘chloride cells’.



1986 ◽  
Vol 122 (1) ◽  
pp. 25-35
Author(s):  
ČEDOMIL LUCU ◽  
DIETRICH SIEBERS

Sodium and chloride fluxes, as well as transbranchial potentials (TBP) were studied in isolated perfused gill filaments of the crab Carcinus mediterraneus. Experiments were carried out in media that were either hyposmotic to the perfusion solution (asymmetrical conditions) or isosmotic (symmetrical conditions). Fluxes were found to be diffusional in gills under asymmetrical conditions; amiloride induced an inhibitory effect on influxes, without affecting TBP. Under symmetrical conditions, TBP was −7.6±2.3mV, suggesting that the electrogenic ion pump contributes significantly to the development of TBP. Immediately after addition of 2.5 × 10−4 moll−1 amiloride to the external solution, sodium influxes were reduced to 31% of those in the control group, and TBP was significantly hyperpolarized from −7.6 to −14.8 mV. The absence of Ca2+ under symmetrical conditions diminished TBP hyperpolarization. Half-maximal inhibition of sodium influxes by amiloride was at 7 × 10−5 moll−1. This low amiloride affinity is typical of low resistance leaky epithelia. Sodium transport is discussed as an amiloride-affected influx, probably as a Na/H antiport.



Sign in / Sign up

Export Citation Format

Share Document