Skeletal deformities and meristic trait variations are common in the intertidal fish Bathygobius cocosensis (Perciformes‐Gobiidae)

2021 ◽  
Author(s):  
Lucie Malard ◽  
Cynthia Riginos ◽  
Katrina McGuigan



2013 ◽  
Vol 18 (6) ◽  
pp. 1399-1405
Author(s):  
Hui MA ◽  
Zhimeng ZHUANG ◽  
Shufang LIU ◽  
Qian MA ◽  
Xiuli WANG


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 975
Author(s):  
Kara Corps ◽  
Monica Stanwick ◽  
Juliann Rectenwald ◽  
Andrew Kruggel ◽  
Sarah B. Peters

Transforming growth factor β (TGFβ) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFβ receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.



2017 ◽  
Vol 129 ◽  
pp. 408-412 ◽  
Author(s):  
M. Roberto García-Huidobro ◽  
Marcela Aldana ◽  
Cristian Duarte ◽  
Cristóbal Galbán-Malagón ◽  
José Pulgar




2014 ◽  
Vol 100 ◽  
pp. 93-98 ◽  
Author(s):  
A. Carrasco-Malio ◽  
M. Díaz ◽  
M. Mella ◽  
M.J. Montoya ◽  
A. Miranda ◽  
...  


2018 ◽  
Vol 23 (1) ◽  
pp. 1 ◽  
Author(s):  
Colin K. C. Wen ◽  
Li-Shu Chen ◽  
Kwang-Tsao Shao

Spatial and temporal variations in the species composition of assemblages are common in many marine organisms, including fishes. Variations in the fish species composition of subtidal coral reefs have been well documented, however much less is known about such differences for intertidal fish assemblages. This is surprising, given that intertidal fishes are more vulnerable to terrestrial human disturbances. It is critical to evaluate the ecology and biology of intertidal fishes before they are severely impacted by coastal development, especially in developing countries such as those in the tropical western Pacific region where coastal development is rapidly increasing. In this study, we investigated the species composition, abundance, biomass and species number (richness) for intertidal fish assemblages in subtropical (northern) and tropical (southern) Taiwan across four seasons by collecting fishes from tidepools using clove oil. We also examined the gut contents of collected fishes to identify their trophic functional groups in order to investigate regional and seasonal variations for different trophic groups. We found significant differences in the species composition of tidepool fish assemblages between subtropical and tropical Taiwan. Bathygobius fuscus, Abudefduf vaigiensis and Istiblennius dussumieri were dominant species in subtropical Taiwan, whereas Bathygobius coalitus, Abudefduf septemfasciatus and Istiblennius lineatus were dominant in tropical Taiwan. Other species such as Bathygobius cocosensis, Abudefduf sordidus and Istiblennius edentulus were common in both regions. For trophic groups, omnivores and detritivores had or showed trends towards higher species numbers and abundances in the subtropical region, whereas herbivores, planktivores and general carnivores had or showed trends towards higher species numbers and biomass in the tropical region. Overall, many intertidal fish species and trophic groups showed differences in abundance, biomass and species number between subtropical and tropical Taiwan. Further studies on large scale geographical gradients in trophic groups and species compositions in the Indo-west Pacific region are encouraged to assist with ecosystem monitoring and assessment. Keywords: Intertidal fishes, spatio-temporal pattern, feeding guild, diet



2020 ◽  
Vol 94 ◽  
Author(s):  
N.V. Leiva ◽  
G. Muñoz ◽  
M.T. González

Abstract Parasite composition can be affected by physiological and ecological changes during host ontogeny. Intertidal fish do not travel long distances and live in the same area throughout their lifetimes, meaning that parasite communities can differ across geographic ranges. The objective of this study was to analyse the parasite communities of three fish species (Hypsoblennius sordidus, Helcogrammoides cunninghami and Scartichthys viridis) collected from the Chilean coast. The composition of parasite species was compared among host ontogenetic stages (larvae, juveniles and mature fish) and geographic areas. A total of 184 larval, 252 juveniles and 217 mature individuals were collected in the northern area (c. 24°S), and 186 larval, 192 juveniles and 112 mature individuals from the central area (c. 33°S). Ectoparasites were most prevalent in fish from the central area, whereas endoparasites were most prevalent in the northern area. The parasite species richness varied significantly between geographical areas for H. sordidus and H. cunninghami, but the parasite composition varied significantly between geographical areas for all fish species analysed. Therefore, the geographical area was the most important factor determining the parasite composition of intertidal fish species. The absence of endoparasites in fish larvae and the increased infestation in juvenile and mature fish may be explained by the shift in habitat from the water column to intertidal pools where prey abundance and availability are higher. On the other hand, hydrographic barriers affecting prey distributions may also offer an explanation as to the differences in parasite composition.





2016 ◽  
Vol 76 (2) ◽  
pp. 500-505
Author(s):  
F. A. Moraga ◽  
N. Urriola-Urriola

Abstract Previous studies performed in intertidal fish (Girella laevifrons),as well as marine fish (Isacia conceptionis), showed that acetylcholine (ACh) produced contractions mediated by cyclooxygenases that were dependent on the area and potency of contraction in several arterial vessels. Given that the role of nitric oxide is poorly understood in fish, the objective of our study was to evaluate the role of nitric oxide in branchial afferent (ABA), branchial efferent (ABE), dorsal (DA) and mesenteric (MA) arterial vessels from both Girella laevifrons and Isacia conceptionis. We studied afferent and efferent branchial, dorsal and mesenteric arteries that were dissected from 6 juvenile specimens. Isometric tension studies were done using dose response curves (DRC) for Ach (10–13 to 10–3 M) and blockade with L-NAME (10–5 M), and DRC for sodium nitroprusside (SNP, a donor of NO). L-NAME produced an attenuation of the contractile response in the dorsal, afferent and efferent branchial arteries and a potentiation of the contraction in the MA. SNP caused 70% dilation in the mesenteric artery and 40% in the dorsal artery. Our results suggest that Ach promotes precarious dilatation in MA mediated by NO; data that is supported by the use of sodium nitroprusside. In contrast, in the vessels DA, ABA and EBA our results support that the pathway Ach-NO-relaxation is absent in both species.



Sign in / Sign up

Export Citation Format

Share Document