tgfβ receptor
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 61)

H-INDEX

39
(FIVE YEARS 5)

Author(s):  
Ashley Rose Rackow ◽  
Jennifer L Judge ◽  
Collynn F Woller ◽  
Patricia J. Sime ◽  
Robert Matthew Kottmann

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease. The pathogenesis of IPF is not completely understood. However, numerous genes are associated with the development and progression of pulmonary fibrosis, indicating there is a significant genetic component to the pathogenesis of IPF. Epigenetic influences on the development of human disease, including pulmonary fibrosis, remain to be fully elucidated. In this paper we identify miR-338-3p as a microRNA severely downregulated in the lungs of patients with pulmonary fibrosis and in experimental models of pulmonary fibrosis. Treatment of primary human lung fibroblasts with miR-338-3p inhibits myofibroblast differentiation and matrix protein production. Published and proposed targets of miR-338-3p such as TGFβ receptor 1, MEK/ERK 1/2, Cdk4 and Cyclin D are also not responsible for the regulation of pulmonary fibroblast behavior by miR-338-3p. miR-338-3p inhibits myofibroblast differentiation by preventing TGFβ-mediated downregulation of phosphatase and tensin homolog (PTEN), a known anti-fibrotic mediator.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucia Balazova ◽  
Miroslav Balaz ◽  
Carla Horvath ◽  
Áron Horváth ◽  
Caroline Moser ◽  
...  

AbstractActivation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGFβ signalling pathway and regulates the activity of the TGFβ receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGFβ signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.


2021 ◽  
Vol 22 (23) ◽  
pp. 12647
Author(s):  
Liora Jacobs Catane ◽  
Ofra Moshel ◽  
Yoav Smith ◽  
Ben Davidson ◽  
Reuven Reich

The aim of this study was to analyze the biological role of different transforming growth factor-β (TGFβ) receptor splice variants in ovarian carcinoma (OC). Specific receptor variant knockouts (KO) were prepared using the CRISPR/Cas9 genome editing system in two OC cell lines, TβRI variant 1 (TβRIv1) KO in ES-2 cells and TβRII variant 1 (TβRIIv1) KO in OVCAR-8 cells. Control and KO cells were compared by proteomic analysis, functional tests, analysis of epithelial–mesenchymal transition (EMT) drivers, and Western blot of signaling proteins. Proteomic analysis revealed significant changes in protein pathways in the KO cells. TβRIv1 KO resulted in a significant reduction in both cellular motility and invasion, while TβRIIv1 KO significantly reduced cellular motility and increased Reactive Oxygen Species (ROS) production. Both receptor variant KOs reduced MET protein levels. Of the EMT drivers, a significant decrease in TWIST protein expression, and increase in SNAIL protein and MALAT1 mRNA levels were observed in the TβRIIv1 KO compared to control. A significant decrease in JNK1 and JNK2 activation was found in the TβRIv1 KO compared to control cells. These findings provide new insight regarding the biological role of the TGFβ receptor variants in the biology and potentially the progression of OC.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1692
Author(s):  
Evelina La Civita ◽  
Antonietta Liotti ◽  
Michele Cennamo ◽  
Felice Crocetto ◽  
Matteo Ferro ◽  
...  

Periprostatic adipose tissue (PPAT) has emerged as a key player in the prostate cancer (PCa) microenvironment. In this study, we evaluated the ability of PPAT to promote PCa cell migration, as well as the molecular mechanisms involved. Methods: We collected conditioned mediums from in vitro differentiated adipocytes isolated from PPAT taken from PCa patients during radical prostatectomy. Migration was studied by scratch assay. Results: Culture with CM of human PPAT (AdipoCM) promotes migration in two different human androgen-independent (AI) PCa cell lines (DU145 and PC3) and upregulated the expression of CTGF. SB431542, a well-known TGFβ receptor inhibitor, counteracts the increased migration observed in presence of AdipoCM and decreased CTGF expression, suggesting that a paracrine secretion of TGFβ by PPAT affects motility of PCa cells. Conclusions: Collectively, our study showed that factors secreted by PPAT enhanced migration through CTGF upregulation in AI PCa cell lines. These findings reveal the potential of novel therapeutic strategies targeting adipocyte-released factors and TGFβ/CTGF axis to fight advanced PCa dissemination.


2021 ◽  
Vol 22 (21) ◽  
pp. 11765
Author(s):  
Francesco Dituri ◽  
Serena Mancarella ◽  
Grazia Serino ◽  
Nada Chaoul ◽  
Luigi Giovanni Lupo ◽  
...  

The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFβ on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFβ receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFβ-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFβ-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFβ as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFβ signaling as a therapeutic target in HCC patients.


Author(s):  
Xueke Shi ◽  
Jingjing Luo ◽  
Kelsey J. Weigel ◽  
Spencer C. Hall ◽  
Danfeng Du ◽  
...  

Cancer-associated fibroblasts (CAFs) have been shown to enhance squamous cell carcinoma (SCC) growth, but it is unclear whether they promote SCC lung metastasis. We generated CAFs from K15.KrasG12D.Smad4–/– mouse SCCs. RNA expression analyses demonstrated that CAFs had enriched transforming growth factor-beta (TGFβ) signaling compared to normal tissue-associated fibroblasts (NAFs), therefore we assessed how TGFβ-enriched CAFs impact SCC metastasis. We co-injected SCC cells with CAFs to the skin, tail vein, or the lung to mimic sequential steps of lung metastasis. CAFs increased SCC volume only in lung co-transplantations, characterized with increased proliferation and angiogenesis and decreased apoptosis compared to NAF co-transplanted SCCs. These CAF effects were attenuated by a clinically relevant TGFβ receptor inhibitor, suggesting that CAFs facilitated TGFβ-dependent SCC cell seeding and survival in the lung. CAFs also increased tumor volume when co-transplanted to the lung with limiting numbers of SCC cancer stem cells (CSCs). In vitro, CSC sphere formation and invasion were increased either with co-cultured CAFs or with CAF conditioned media (which contains the highest TGFβ1 concentration) and these CAF effects were blocked by TGFβ inhibition. Further, TGFβ activation was higher in primary human oral SCCs with lung metastasis than SCCs without lung metastasis. Similarly, TGFβ activation was detected in the lungs of mice with micrometastasis. Our data suggest that TGFβ-enriched CAFs play a causal role in CSC seeding and expansion in the lung during SCC metastasis, providing a prognostic marker and therapeutic target for SCC lung metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3397
Author(s):  
Xuecong Wang ◽  
Jean Paul Thiery

Epithelial cell plasticity, a hallmark of carcinoma progression, results in local and distant cancer dissemination. Carcinoma cell plasticity can be achieved through epithelial–mesenchymal transition (EMT), with cells positioned seemingly indiscriminately across the spectrum of EMT phenotypes. Different degrees of plasticity are achieved by transcriptional regulation and feedback-loops, which confer carcinoma cells with unique properties of tumor propagation and therapy resistance. Decoding the molecular and cellular basis of EMT in carcinoma should enable the discovery of new therapeutic strategies against cancer. In this review, we discuss the different attributes of plasticity in carcinoma and highlight the role of the canonical TGFβ receptor signaling pathway in the acquisition of plasticity. We emphasize the potential stochasticity of stemness in carcinoma in relation to plasticity and provide data from recent clinical trials that seek to target plasticity.


2021 ◽  
Author(s):  
Julia H. Carter ◽  
James P. Schaeper ◽  
Taiping Chen ◽  
Diane W. Fritz ◽  
Leah Focke ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 975
Author(s):  
Kara Corps ◽  
Monica Stanwick ◽  
Juliann Rectenwald ◽  
Andrew Kruggel ◽  
Sarah B. Peters

Transforming growth factor β (TGFβ) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFβ receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.


Sign in / Sign up

Export Citation Format

Share Document