Non‐invasive quality analysis of thawed tuna using near infrared spectroscopy with baseline correction

2020 ◽  
Vol 43 (8) ◽  
Author(s):  
Yuqiang Li ◽  
Tianhong Pan ◽  
Haoran Li ◽  
Shan Chen
2012 ◽  
pp. 97-100
Author(s):  
Éva Kónya ◽  
Géza Kovács ◽  
Zoltán Győri

The near infrared spectroscopy is widely used in the different industries as a rapid, non-invasive analitical tool. It is suitable for identification, qualification and quantitative analysis as well. As this technique is indirect, to make accurate calibration equations we need a proper sample population. Before the quantitaive analysis, developing calibiration modells we have to collect and examine the spectra. In our study we examined wheat samples with known origins to find if there is any effect of the growing area on the NIR spectra.


Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 389
Author(s):  
Kogulan Paulmurugan ◽  
Vimalan Vijayaragavan ◽  
Sayantan Ghosh ◽  
Parasuraman Padmanabhan ◽  
Balázs Gulyás

Functional Near-Infrared Spectroscopy (fNIRS) is a wearable optical spectroscopy system originally developed for continuous and non-invasive monitoring of brain function by measuring blood oxygen concentration. Recent advancements in brain–computer interfacing allow us to control the neuron function of the brain by combining it with fNIRS to regulate cognitive function. In this review manuscript, we provide information regarding current advancement in fNIRS and how it provides advantages in developing brain–computer interfacing to enable neuron function. We also briefly discuss about how we can use this technology for further applications.


2021 ◽  
Vol 22 (18) ◽  
pp. 9940
Author(s):  
Soo-In Sohn ◽  
Subramani Pandian ◽  
Young-Ju Oh ◽  
John-Lewis Zinia Zaukuu ◽  
Hyeon-Jung Kang ◽  
...  

Near-infrared spectroscopy (NIRS) has become a more popular approach for quantitative and qualitative analysis of feeds, foods and medicine in conjunction with an arsenal of chemometric tools. This was the foundation for the increased importance of NIRS in other fields, like genetics and transgenic monitoring. A considerable number of studies have utilized NIRS for the effective identification and discrimination of plants and foods, especially for the identification of genetically modified crops. Few previous reviews have elaborated on the applications of NIRS in agriculture and food, but there is no comprehensive review that compares the use of NIRS in the detection of genetically modified organisms (GMOs). This is particularly important because, in comparison to previous technologies such as PCR and ELISA, NIRS offers several advantages, such as speed (eliminating time-consuming procedures), non-destructive/non-invasive analysis, and is inexpensive in terms of cost and maintenance. More importantly, this technique has the potential to measure multiple quality components in GMOs with reliable accuracy. In this review, we brief about the fundamentals and versatile applications of NIRS for the effective identification of GMOs in the agricultural and food systems.


Sign in / Sign up

Export Citation Format

Share Document