Assessment of larvae killing pneumatic conveying system elbow: Screening the pressure drop and numerical simulation

Author(s):  
Peyman Mohammadzadeh ◽  
Gholamhossein Shahgholi ◽  
Adel Rezvanivand Fanaei ◽  
Vahid Rostampour
2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Fei Yan ◽  
Akira Rinoshika

A new pneumatic conveying system that applies soft fins mounted vertically on a center plane of pipe in the inlet of the gas-particle mixture is developed to reduce power consumption and conveying velocity. The effect of different fin’s lengths on a horizontal pneumatic conveying is experimentally studied in terms of the pressure drop, conveying velocity, power consumption, particle flow pattern, and additional pressure drop. The test pipeline consisted of a horizontal smooth acrylic tube with an inside diameter of 80 mm and a length of about 5 m. Two kinds of polyethylene particles with diameters of 2.3 mm and 3.3 mm are used as conveying materials. The superficial air velocity is varied from 10 to 17 m/s, and the solid mass flow rate is from 0.20 to 0.45 kg/s. Compared with conventional pneumatic conveying, the pressure drop, minimum and critical velocities, power consumption, and additional pressure drop can be reduced by using soft fins in a lower air velocity range, and the efficiency of fins becomes more evident when increasing the length of the fins or touching particles stream by the long fins. The maximum reduction rates of the minimum velocity and power consumption by using soft fins are about 20% and 31.5%, respectively. The particle concentrations of using fins are lower than those of non-fin near the bottom of the pipe and are higher than those of non-fin in the upper part of the pipe in the acceleration region. Based on analyzing the frequency features of the fin’s oscillation, the Strouhal number of more efficient fins is about St ≈ 0.75 in the air velocity range of lower than 13 m/s.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 650
Author(s):  
Daolong Yang ◽  
Yanxiang Wang ◽  
Zhengwei Hu

As a type of airtight conveying mode, pneumatic conveying has the advantages of environmental friendliness and conveying without dust overflow. The application of the pneumatic conveying system in the field of coal particle conveying can avoid direct contact between coal particles and the atmosphere, which helps to reduce the concentration of air dust and improve environmental quality in coal production and coal consumption enterprises. In order to predict pressure drop in the pipe during the horizontal pneumatic conveying of large coal particles, the Lagrangian coupling method and DPM (discrete particle model) simulation model was used in this paper. Based on the comparison of the experimental results, the feasibility of the simulation was verified and the pressure drop in the pipe was simulated. The simulation results show that when the flow velocity is small, the simulation results of the DPM model are quite different from that of the experiment. When the flow velocity is large, the large particle horizontal pneumatic conveying behavior predicted by the model is feasible, which can provide a simulation reference for the design of the coal pneumatic conveying system.


1966 ◽  
Vol 9 (1) ◽  
pp. 0029-0031 ◽  
Author(s):  
G. K. Cornish and L. F. Charity

1998 ◽  
Vol 120 (1) ◽  
pp. 200-203 ◽  
Author(s):  
Hui Li ◽  
Yuji Tomita

A swirling flow is adopted for a vertical pneumatic conveying system to reduce conveying velocity, pipe wear, and particle degradation. An experimental study has addressed the characteristics of swirling flow pneumatic conveying (SFPC) for the total pressure drop, solid flow patterns, power consumption, and additional pressure drop. Polystyrene, polyethylene, and polyvinyl particles with mean diameters of 1.7, 3.1, and 4.3 mm, respectively, were transported as test particles in a vertical pipeline 12.2 m in height with an inside diameter of 80 mm. The initial swirl number was varied from 0.38 to 0.94, the mean air velocity was varied from 9 to 23 m/s, and the mass flow rate of the solids was varied from 0.3 to 1.25 kg/s. The minimum and critical air velocities decreased as much as 20 and 13 percent, respectively, when using SFPC. The total pressure drop and power consumption of SFPC are close to those of axial flow pneumatic conveying in the low air velocity range.


2018 ◽  
Vol 327 ◽  
pp. 43-56 ◽  
Author(s):  
Naveen Mani Tripathi ◽  
Avi Levy ◽  
Haim Kalman

2008 ◽  
Vol 26 (5) ◽  
pp. 451-459 ◽  
Author(s):  
C. Ratnayake ◽  
Biplab K. Datta ◽  
Arild Saasen ◽  
Yngve Bastesen ◽  
Morten C. Melaaen

Sign in / Sign up

Export Citation Format

Share Document