The effect of multiple freeze–thaw cycles on protein oxidation and quality of Trachurus murphyi

Author(s):  
Chunlin Hu ◽  
Jing Xie

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1350
Author(s):  
Chunlin Hu ◽  
Jing Xie

Temperature fluctuation in frozen food storage and distribution is the perpetual and core issue faced by the frozen food industry. Ice recrystallisation induced by temperature fluctuations under cold storage causes microstructural changes in fish products and irreversible damages to cells and tissues, which lower the frozen fish quality in the food chain. This study is intended to explore how repeated freezing–thawing affected the microstructure and quality of Trachurus murphyi during its frozen storage. The results showed the consistency between the increase in ice crystal diameter, volume, and porosity in frozen fish and the increase in centrifugal loss (from 22.4% to 25.69%), cooking loss (from 22.32% to 25.19%), conductivity (from 15.28 Ms/cm to 15.70 Ms/cm), TVB-N (from 16.32 mg N/100 g to 19.94 mg N/100 g), K-value (from 3.73% to 7.07%), and amino acid composition. The muscle structure change observed by Fourier-Transform Infrared spectroscopy (FT-IR) showed that the content of α-helix reduced from 59.05% to 51.83%, while the β-sheet fraction grew from 15.44% to 17.11%, β-turns increased from 5.45% to 7.58%, and random coil from 20.06% to 23.49%. Moreover, muscular structure exhibited varying degrees of deterioration with increasing cycles of freezing and thawing as shown by scanning electron microscopy (SEM). We studied the muscular morphology, which included the measurement of porosities (%) of pore that increased (from 1.4% to 4.3%) and pore distribution, by X-ray computed tomography (uCT). The cycles of the freeze–thaw resulted in structural changes, which seemed to be closely associated with ultimate quality of frozen fish products.



2016 ◽  
Vol 196 ◽  
pp. 1310-1314 ◽  
Author(s):  
Laura Lorido ◽  
Sonia Ventanas ◽  
Tolga Akcan ◽  
Mario Estévez




2021 ◽  
Vol 10 (2) ◽  
pp. 45-54
Author(s):  
Shraddha A Bhoir ◽  
Sonit Kumari

In present study, the usability of chitosan and gelatin (1:1) films incorporated with green tea extract (GTE) to improve the shelf life of the chicken meat stored in chilled condition was evaluated. The extract of green tea was evaluated for its phenolic content, antioxidant activity and ferric ion chealating ability. The ChGel films possessed antimicrobial activity and inactivated approximately 3 log cfu/ ml of K. pneumoniae, S. typhi var. Weltevreden, S. typhi var. Oslo, Y. enterocolitica, E. feacalis, B. cereus, E. coli and S. aureus in 3 hours. Incorporation of GTE influenced the optical and mechanical properties of the films. Chicken samples without films were observed to be microbiologically safe for not more than 6 days, while ChGel and ChGel-GTE films improved the microbial safety of chicken samples till day 13. ChGel-GTE films also prevented lipid peroxidation in samples as evident by TBARS value (day 10: control: 1.14; ChGel-GTE: 0.21 mg MDA eq/kg). Protein oxidation during chilled storage of chicken was also prevented by ChGel-GTE by inhibiting protein carbonylation, loss of free thiols groups in protein and lowering the number of disulphde bonds. This study supports use of ChGel films with GTE for enhancing the safety of stored chicken meat not only by maintaining the microbial quality of the samples but also preventing oxidative changes which can hamper the functional, nutritional and sensorial properties.



1977 ◽  
Vol 34 (12) ◽  
pp. 2369-2373 ◽  
Author(s):  
Doris Fraser Hiltz ◽  
D. H. North ◽  
Barbara Smith Lall ◽  
R. A. Keith

Refrozen silver hake (Merluccius bilinearis), processed as fillets and minced flesh after thawing of stored round fish that had been frozen within 14 h of capture, underwent rapid deterioration during storage at −18 °C compared with once-frozen control materials from the same lot of fish. The estimated maximum storage life of silver hake refrozen as fillets after 3 and 6 mo storage of the round fish at −25 °C was reduced to about 4.5 and 1 mo, respectively, from 10 mo for once-frozen control fillets. Quality of the refrozen materials immediately after thawing and refreezing was similar to that of the round-frozen fish, except after 6 mo, where some initial deterioration occurred, particularly in minced flesh. Minced flesh was more unstable in frozen storage than fillets. In all once- and twice-frozen materials, formation of dimethylamine occurred concomitantly with decrease in protein extractability. Round-frozen fish underwent no loss in protein extractability during 6 mo storage at −25 °C, but some lipid hydrolysis occurred. These results suggest that the freeze–thaw–refreeze process as applied to silver hake will yield a final product of acceptable quality provided that storage of the round fish does not exceed 3–4 mo and that the refrozen materials are marketed within a month after processing. Key words: silver hake, Merluccius bilinearis, refrozen storage, dimethylamine, minced flesh



2009 ◽  
Vol 58 (1) ◽  
pp. 70-85
Author(s):  
Henry Munack ◽  
Hilmar Schröder

Abstract. Ground temperature measurements have been carried out at eleven different sites of the Prokhodnaja valley in the high mountains of the Zailijskij Alatau (Northern Tian Shan, Kazakhstan) between the summers of 2003 and 2004. For this purpose the periglacial zone and adjacent altitudinal zones have been examined between 2,500 and 4,000 m asl with an equidistance of 250 m. The influences of the altitude, the exposure as well as the depth below the earth’s surface on the thermal content and condition of periglacial soils have been considered. The measurements provide useful information about the relations between quantity and quality of freeze-thaw action and the parameters mentioned above.



2005 ◽  
Vol 16 (4) ◽  
pp. 354-378 ◽  
Author(s):  
S. JITTINANDANA ◽  
P.B. KENNEY ◽  
S.D. SLIDER
Keyword(s):  


LWT ◽  
2019 ◽  
Vol 113 ◽  
pp. 108301 ◽  
Author(s):  
Maria Érica da Silva Oliveira ◽  
Alex Augusto Gonçalves


2020 ◽  
Vol 43 (11) ◽  
Author(s):  
Hongyao Jiang ◽  
Min Zhang ◽  
Yanan Sun ◽  
Bhesh Bhandari ◽  
Xi Wang


Sign in / Sign up

Export Citation Format

Share Document