Evaluation of environmental and economic implications of a cold‐weather aquaponic food production system using life cycle assessment and economic analysis

Author(s):  
Ramin Ghamkhar ◽  
Christopher Hartleb ◽  
Zack Rabas ◽  
Andrea Hicks
2020 ◽  
Vol 244 ◽  
pp. 118767 ◽  
Author(s):  
Ramin Ghamkhar ◽  
Christopher Hartleb ◽  
Fan Wu ◽  
Andrea Hicks

2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amin Nikkhah ◽  
Sam Van Haute ◽  
Vesna Jovanovic ◽  
Heejung Jung ◽  
Jo Dewulf ◽  
...  

AbstractBecause it is important to develop new sustainable sources of edible protein, insects have been recommended as a new protein source. This study applied Life Cycle Assessment (LCA) to investigate the environmental impact of small-scale edible insect production unit in South Korea. IMPACT 2002 + was applied as the baseline impact assessment (IA) methodology. The CML-IA baseline, EDIP 2003, EDP 2013, ILCD 2011 Midpoint, and ReCiPe midpoint IA methodologies were also used for LCIA methodology sensitivity analysis. The protein, fat contents, and fatty acid profile of the investigated insect (Protaetia brevitarsis seulensis larvae) were analyzed to determine its potential food application. The results revealed that the studied edible insect production system has beneficial environmental effects on various impact categories (ICs), i.e., land occupation, mineral extraction, aquatic and terrestrial ecotoxicity, due to utilization of bio-waste to feed insects. This food production system can mitigate the negative environmental effects of those ICs, but has negative environmental impact on some other ICs such as global warming potential. By managing the consumption of various inputs, edible insects can become an environmentally efficient food production system for human nutrition.


2021 ◽  
Vol 87 ◽  
pp. 106519 ◽  
Author(s):  
Rodrigo Salvador ◽  
Murillo Vetroni Barros ◽  
Giovani Elias Tagliaferro dos Santos ◽  
Karen Godoi van Mierlo ◽  
Cassiano Moro Piekarski ◽  
...  

2018 ◽  
Vol 167 ◽  
pp. 186-194 ◽  
Author(s):  
Xiaozhong Wang ◽  
Bin Liu ◽  
Gang Wu ◽  
Yixiang Sun ◽  
Xisheng Guo ◽  
...  

2021 ◽  
Author(s):  
Somdip Dey ◽  
Suman Saha ◽  
Amit Singh ◽  
Klaus D. Mcdonald-Maier

<div><div><div><p>Food safety is an important issue in today’s world. Traditional agri-food production system doesn’t offer easy traceability of the produce at any point of the supply chain, and hence, during a food-borne outbreak, it is very difficult to sift through food production data to track produce and origin of the outbreak. In recent years, blockchain based food production system has resolved this challenge, however, none of the proposed methodologies makes the food production data easily accessible, traceable and verifiable by consumers or producers using mobile/edge devices. In this paper, we propose FoodSQRBlock (Food Safety Quick Response Block), a blockchain technology based framework, which digitizes the food production information, and makes it easily accessible, traceable and verifiable by the consumers and producers by using QR codes. We also propose a large scale integration of FoodSQRBlock in the cloud to show the feasibility and scalability of the framework, and experimental evaluation to prove that.</p></div></div></div>


2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


Sign in / Sign up

Export Citation Format

Share Document