scholarly journals Highly efficient and genotype‐independent genetic transformation and gene editing in watermelon ( Citrullus lanatus ) by utilizing a chimeric ClGRF4‐GIF1 gene

Author(s):  
Qin Feng ◽  
Ling Xiao ◽  
Yizhen He ◽  
Man Liu ◽  
Jiafa Wang ◽  
...  



2018 ◽  
Vol 19 (10) ◽  
pp. 3000 ◽  
Author(s):  
Shouhong Zhu ◽  
Xiuli Yu ◽  
Yanjun Li ◽  
Yuqiang Sun ◽  
Qianhao Zhu ◽  
...  

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing system has been shown to be able to induce highly efficient mutagenesis in the targeted DNA of many plants, including cotton, and has become an important tool for investigation of gene function and crop improvement. Here, we developed a simple and easy to operate CRISPR/Cas9 system and demonstrated its high editing efficiency in cotton by targeting-ALARP, a gene encoding alanine-rich protein that is preferentially expressed in cotton fibers. Based on sequence analysis of the target site in the 10 transgenic cottons containing CRISPR/Cas9, we found that the mutation frequencies of GhALARP-A and GhALARP-D target sites were 71.4–100% and 92.9–100%, respectively. The most common editing event was deletion, but deletion together with large insertion was also observed. Mosaic mutation editing events were detected in most transgenic plants. No off-target mutation event was detected in any the 15 predicted sites analyzed. This study provided mutants for further study of the function of GhALARP in cotton fiber development. Our results further demonstrated the feasibility of use of CRISPR/Cas9 as a targeted mutagenesis tool in cotton, and provided an efficient tool for targeted mutagenesis and functional genomics in cotton.



2015 ◽  
Vol 32 (4) ◽  
pp. 333-336 ◽  
Author(s):  
Shoko Tsuboyama-Tanaka ◽  
Satoko Nonaka ◽  
Yutaka Kodama


2017 ◽  
Vol 5 ◽  
pp. 153-164 ◽  
Author(s):  
Pavel I. Ortinski ◽  
Bernadette O’Donovan ◽  
Xiaoyu Dong ◽  
Boris Kantor


2021 ◽  
Vol 17 (4) ◽  
pp. e1009117
Author(s):  
Ezgi Akidil ◽  
Manuel Albanese ◽  
Alexander Buschle ◽  
Adrian Ruhle ◽  
Dagmar Pich ◽  
...  

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.



2021 ◽  
Vol 2 ◽  
Author(s):  
Morgan E. McCaw ◽  
Keunsub Lee ◽  
Minjeong Kang ◽  
Jacob D. Zobrist ◽  
Mercy K. Azanu ◽  
...  

Maize (Zea mays ssp. mays) is a popular genetic model due to its ease of crossing, well-established toolkits, and its status as a major global food crop. Recent technology developments for precise manipulation of the genome are further impacting both basic biological research and biotechnological application in agriculture. Crop gene editing often requires a process of genetic transformation in which the editing reagents are introduced into plant cells. In maize, this procedure is well-established for a limited number of public lines that are amenable for genetic transformation. Fast-Flowering Mini-Maize (FFMM) lines A and B were recently developed as an open-source tool for maize research by reducing the space requirements and the generation time. Neither line of FFMM were competent for genetic transformation using traditional protocols, a necessity to its status as a complete toolkit for public maize genetic research. Here we report the development of new lines of FFMM that have been bred for amenability to genetic transformation. By hybridizing a transformable maize genotype high Type-II callus parent A (Hi-II A) with line A of FFMM, we introgressed the ability to form embryogenic callus from Hi-II A into the FFMM-A genetic background. Through multiple generations of iterative self-hybridization or doubled-haploid method, we established maize lines that have a strong ability to produce embryogenic callus from immature embryos and maintain resemblance to FFMM-A in flowering time and stature. Using an Agrobacterium-mediated standard transformation method, we successfully introduced the CRISPR-Cas9 reagents into immature embryos and generated transgenic and mutant lines displaying the expected mutant phenotypes and genotypes. The transformation frequencies of the tested genotypes, defined as the numbers of transgenic event producing T1 seeds per 100 infected embryos, ranged from 0 to 17.1%. Approximately 80% of transgenic plants analyzed in this study showed various mutation patterns at the target site. The transformable FFMM line, FFMM-AT, can serve as a useful genetic and genomic resource for the maize community.



Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1852-1852
Author(s):  
Jing Zeng ◽  
Selami Demirci ◽  
My Anh Nguyen ◽  
Linda Yingqi Lin ◽  
Stacy A. Maitland ◽  
...  

Abstract Targeting the BCL11A erythroid enhancer by gene editing is a promising approach to fetal hemoglobin induction for beta-hemoglobinopathies. HbF levels vary widely among individuals, suggesting potential heterogeneity in HbF responses after therapeutic intervention. We hypothesize that maximizing both gene edit frequency and HbF induction potential could promote consistently favorable clinical outcomes. Here we compared CRISPR-Cas9 endonuclease editing of the BCL11A +58 enhancer with alternative gene modification approaches, including +55 erythroid enhancer editing alone or in combination with the +58 enhancer, as well as editing targeting the HBG1/2 promoter -115 BCL11A binding site and transduction by an shRNA knocking down the BCL11A transcript in erythroid precursors. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in the most potent HbF induction (52.4%±6.3%) of tested approaches (BCL11A +58 editing alone, 29.1%±3.9%; BCL11A +55 editing alone, 34.8±5.1%; HBG1/2 promoter editing, 34.1% ±5.4%; shmiR-BCL11A, 32.2%±4.4%; mock, 7.6%±3.4%). Based on assays in bulk and single cell derived erythroid cultures and xenografted immunodeficient mice, we found that disruption of core half E-box/GATA motifs at both the +58 and +55 enhancers was associated with greatest HbF induction, whether by small indels, interstitial 3.1 kb deletion, or 3.1 kb inversion. Rare gene edited clones with alleles that only partially disrupted these motifs were associated with intermediate HbF induction phenotypes. Combined editing of BCL11A +58 and +55 enhancers was compatible with HSC self-renewal in primary and secondary xenotransplant, with intact lymphoid, myeloid and erythroid repopulation. We conducted gene-edited cell product manufacturing process development and developed conditions using a MaxCyte electroporation instrument achieving mean 97.3±1.8% gene edits and 88.9%±6.4% viability 24 hours after electroporation in 3 engineering runs at clinical scale. We obtained similar results at small-scale with plerixafor-mobilized HSPCs from sickle cell disease (SCD) donors or G-CSF mobilized PBMCs from transfusion-dependent beta-thalassemia (TDT) donors, including 94.2%±4.4%, 99.5%±0.3% and 91.8%±6.3% of gene edits in engrafting cells from NBSGW 16 week mouse bone marrow of healthy, SCD and TDT donors respectively. Off-target analyses by pooled amplicon sequencing of 601 candidate off-target sites for the +58 and +55 targeting sgRNAs, nominated by a range of computational (CRISPRme) and experimental (GUIDE-seq and ONE-seq) methods, did not identify reference genome off-target edits at a sensitivity of 0.1% allele frequency. We evaluated +58/+55 enhancer combined targeting in nonhuman primates by performing ribonucleoprotein (RNP) electroporation in rhesus macaque mobilized peripheral blood CD34+ HSPCs with autologous re-infusion following busulfan myeloablation. We observed highly efficient gene edit frequency (85.2%, 88.8% and 84.9%) and durable HbF induction (26.4%, 57.5%, and 45.9% F-cells and 12.7%, 41.9%, and 28% gamma-globin) in the peripheral blood in 3 animals at most recent recorded time point post infusion (127, 78, and 54 weeks respectively). Single colony analyses and bulk ddPCR and unidirectional sequencing demonstrated that the long-term engrafting cells displayed a similar distribution of indels, 3.1 kb deletions, and 3.1 kb inversions as the input cell products. Erythroid stress due to hydroxyurea treatment, with or without phlebotomy, was associated with substantially augmented HbF responses (to 75.9%, 88.2%, and 57.8% F-cells and 47.9%, 68%, and 35.7% gamma-globin). No hematologic or other toxicities attributable to gene editing were observed. Together these results suggest that combined BCL11A +58 and +55 erythroid enhancer editing produces highly efficient on-target allelic disruption, erythroid-specific BCL11A downregulation, heightened HbF induction capacity compared to alternative approaches, preserved long-term multilineage engraftment potential by both human xenotransplant and rhesus autotransplant assays, and absence of evident genotoxicity, under clinically relevant SpCas9 RNP electroporation conditions. Disclosures No relevant conflicts of interest to declare.



2016 ◽  
Vol 24 ◽  
pp. S288-S289
Author(s):  
Jack M. Heath ◽  
Aditi Chalishazar ◽  
Christina S. Lee ◽  
William Selleck ◽  
Cecilia Cotta-Ramusino ◽  
...  


2020 ◽  
pp. 100082 ◽  
Author(s):  
Yong Han ◽  
Sue Broughton ◽  
Li Liu ◽  
Xiao-Qi Zhang ◽  
Jianbin Zeng ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document