scholarly journals Semimembranosus muscle displacement is associated with movement of the superficial fascia: An in vivo ultrasound investigation

2020 ◽  
Vol 237 (6) ◽  
pp. 1026-1031
Author(s):  
Jan Wilke ◽  
Sarah Tenberg
2013 ◽  
Vol 11 (8) ◽  
pp. 602
Author(s):  
Shendy Engelina ◽  
Antonios Tony ◽  
Claire Robertson ◽  
Alban Killingback ◽  
Philip Adds

2003 ◽  
Vol 549 (3) ◽  
pp. 877-888 ◽  
Author(s):  
A. N. Ahn ◽  
R. J. Monti ◽  
A. A. Biewener

Author(s):  
Michael A Bencivenga ◽  
Philip A Bowling ◽  
Jimmy O Fiallos ◽  
Alicia M Gehling ◽  
Robert G Stafford ◽  
...  

The goal of this study is to provide quantitative data on the ideal volume for intramuscular (IM) injections into the semimembranosus muscle of guinea pigs weighing between 320 to 410 grams. This evaluation comprised 2 experiments. The first was to assess dispersion leakage of intramuscularly injected iohexol, a radiocontrast agent commonly used in Computed Tomography (CT), based on analysis of in vivo imaging. The second used varying volumes of intramuscularly injected sodium chloride (0.9% NaCl) to assess pain and pathology associated with IM injection. Hartley guinea pigs were injected IM with varying volumes of either iohexol or sodium chloride (150, 300, 500, 1000 and 1500 μL). In the iohexol experiment, results suggest IM volumes of 150 and 300 μL remain within the target muscle. In the experiment using sodium chloride, pain and pathology did not increase as IM volume increased. The pathology noted was related to needle tract through the musculature rather than the volume size of the injectate. The results did not reveal a correlation between volume of IM 0.9% NaCl and pain levels. We conclude that volume size correlates more with precision and accuracy of delivery into the intended muscle tissue. Regarding tissue distribution, our findings also suggest that the optimal capacity for IM injection in the semimembranosus muscle should be less than 500 μL.


1996 ◽  
Vol 271 (2) ◽  
pp. C571-C578 ◽  
Author(s):  
G. J. Lutz ◽  
L. C. Rome

We characterized the design of the frog muscular system for jumping by comparing the properties of isolated muscle with the operating conditions of muscle measured during maximal jumps. During jumping, the semimembranosus muscle (SM) shortened with a V/Vmax (where V is shortening velocity and Vmax is maximal shortening velocity) where 90 and 100% of maximal power would be generated at 15 and 25 degrees C, respectively. To assess the level of activation during jumping, the SM was driven through the in vivo length change and stimulus conditions while the resulting force was measured. The force generated under the in vivo conditions at both temperatures was at least 90% of the force generated at that same V under maximally activated conditions. Thus the SM was nearly maximally activated, and shortening deactivation was minimal. The initial sarcomere length and duration of the stimulus before shortening were important factors that minimized shortening deactivation during jumping. Thus the frog muscular system appears to be designed to meet the three necessary conditions for maximal power generation during jumping: optimal myofilament overlap, optimal V/Vmax, and maximal activation.


2018 ◽  
Vol 2 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Lauri Stenroth ◽  
Darryl Thelen ◽  
Jason Franz

Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Sign in / Sign up

Export Citation Format

Share Document