Self‐referent phenotype matching is a poor predictor of egg rejection by American Robins

2020 ◽  
Vol 91 (3) ◽  
pp. 254-262 ◽  
Author(s):  
Mark E. Hauber ◽  
Caterina R. Kim ◽  
Cameron Goethe ◽  
Daniel Hanley
2020 ◽  
Vol 16 (6) ◽  
pp. 20200225 ◽  
Author(s):  
Mikus Abolins-Abols ◽  
Mark E. Hauber

Parasite–host coevolution can lead to novel behavioural adaptations in hosts to resist parasitism. In avian obligate brood parasite and host systems, many host species have evolved diverse cognitive and behavioural traits to recognize and reject parasitic eggs. Our understanding of the evolution and ecology of these defences hinges on identifying the mechanisms that regulate them. We hypothesized that corticosterone, a hormone linked to stress response, vigilance and the suppression of parental behaviour, stimulates the rejection of foreign eggs by brood parasite hosts. We experimentally reduced circulating glucocorticoid levels with mitotane injections in American robins Turdus migratorius and found that the mitotane-treated birds rejected foreign eggs at a lower frequency compared to the sham-treated subjects. This is the first study to causally identify a potential mechanism of a widespread defence behaviour, and it is consistent with egg rejection being mediated by stress physiology.


2018 ◽  
Vol 8 (3) ◽  
pp. 1673-1679 ◽  
Author(s):  
Alec B. Luro ◽  
Branislav Igic ◽  
Rebecca Croston ◽  
Analía V. López ◽  
Matthew D. Shawkey ◽  
...  

Author(s):  
Mark Erno Hauber

Hosts of obligate avian brood parasites can diminish or eliminate the costs of parasitism by rejecting foreign eggs from the nests. A vast literature demonstrates that visual and/or tactile cues can be used to recognize and reject natural or model eggs from the nests of diverse host species. However, data on olfaction-based potential egg recognition cues are both sparse and equivocal: experimentally-applied, naturally-relevant (heterospecific, including parasitic) scents do not appear to increase egg rejection rates in two host species, whereas unnatural scents (human and tobacco scents) do so in one host species. Here I assessed the predictions that (i) human handling of mimetically-painted model eggs would increase rejection rates, and (ii) applying unnatural or natural scents to mimetically or non-mimetically painted model eggs alters these eggs’ respective rejection rates relative to controls. I studied wild American Robins (Turdus migratorius), a robust rejecter species of the eggs of obligate brood parasitic Brown-headed Cowbirds (Molothrus ater). There was no statistical evidence to support either prediction, whereas poorer color-mimicry was still a predicted cause of greater egg rejection in this data set. Nonetheless, future studies could focus on this and other host species and using these and different methods to apply and maintain the scenting of model eggs to more directly test hosts’ use of potential olfactory cues in the foreign-egg rejection process.


2019 ◽  
Author(s):  
Mikus Abolins-Abols ◽  
Mark E. Hauber

AbstractAvian brood parasites and their hosts are engaged in a coevolutionary battle that can result in the evolution of sophisticated trickery by parasites and novel defence behaviours in hosts. Despite the clear evolutionary and ecological significance of host behaviour, however, we know very little about the mechanisms that regulate host defences, which limits our understanding of both inter- and intraspecific variation in host responses to parasitism. Here we tested whether corticosterone, a hormone known to be upregulated in hosts exposed to parasitism, also mediates one of the most frequent host defences – the rejection of foreign eggs. We experimentally reduced corticosterone levels in free-living brood parasite hosts, American robins Turdus migratorius, using mitotane and found that the likelihood of model egg rejection was significantly lower in the mitotane-treated birds relative to the sham-treated birds. These results demonstrate a causal link between glucocorticoids and egg rejection in hosts of avian brood parasites, but the physiological and sensory-cognitive pathways that regulate this effect remain unknown.


2020 ◽  
Vol 223 (20) ◽  
pp. jeb229609
Author(s):  
Alec B. Luro ◽  
Esteban Fernández-Juricic ◽  
Patrice Baumhardt ◽  
Mark E. Hauber

ABSTRACTColor and spatial vision is critical for recognition and discrimination tasks affecting fitness, including finding food and mates, and recognizing offspring. For example, as a counter defense to avoid the cost of raising the unrelated offspring of obligate interspecific avian brood parasites, many host species routinely view, recognize and remove the foreign egg(s) from their nests. Recent research has shown that host species visually attend to both chromatic and spatial pattern features of eggs; yet how hosts simultaneously integrate these features together when recognizing eggs remains an open question. Here, we tested egg rejection responses of American robins (Turdus migratorius) using a range of 3D-printed model eggs covered with blue and yellow checkered patterns differing in relative square sizes. We predicted that robins would reject a model egg if they could visually resolve the blue and yellow squares as separate features, or accept it if the squares blended together and appeared similar in color to the natural blue–green color of robin eggs as perceived by the avian visual system. As predicted, the probability of robins rejecting a model egg increased with greater sizes of its blue and yellow squares. Our results suggest that chromatic visual acuity and viewing distance have the potential to limit the ability of a bird to recognize a foreign egg in its nest, thus providing a limitation to host egg recognition that obligate interspecific avian brood parasites may exploit.


2020 ◽  
Author(s):  
Alec B. Luro ◽  
Esteban Fernández-Juricic ◽  
Patrice Baumhardt ◽  
Mark E. Hauber

AbstractColor and spatial vision are critical for recognition and discrimination tasks affecting fitness, including finding food and mates and recognizing offspring. For example, as a counter defense to avoid the cost of raising the unrelated offspring of obligate interspecific avian brood parasites, many host species routinely view, recognize, and remove the foreign egg(s) from their nests. Recent research has shown that host species visually attend to both chromatic and spatial pattern features of eggs; yet how hosts simultaneously integrate these features together when recognizing eggs remains an open question. Here, we tested egg rejection responses of American robins (Turdus migratorius) using a range of 3D-printed model eggs covered with blue and yellow checkered patterns differing in relative square sizes. We predicted that robins would reject a model egg if they could visually resolve the blue and yellow squares as separate features or accept it if the squares blended together and appeared similar in color to the natural blue-green color of robin eggs as perceived by the avian visual system. As predicted, the probability of robins rejecting a model egg increased with greater sizes of its blue and yellow squares. Our results suggest that chromatic visual acuity and viewing distance have the potential to limit the ability of a bird to recognize a foreign egg in its nest, thus providing a limitation to host egg recognition that obligate interspecific avian brood parasites may exploit.


Behaviour ◽  
2014 ◽  
Vol 151 (6) ◽  
pp. 703-718 ◽  
Author(s):  
R. Croston ◽  
M.E. Hauber

Repeatability is a measure of the amount of variation in a phenotype that is attributable to differences between individuals. This concept is important for any study of behaviour, as all traits of evolutionary interest must be repeatable in order to respond to selection. We investigated the repeatability of behavioural responses to experimental brood parasitism in American robins, a robust (100%) rejecter of parasitic brown-headed cowbird eggs. Because tests of repeatability require variation between individuals, we parasitized the same robin nests twice successively with model eggs dyed with colours known to elicit rejection at intermediate rates (58–70%). We calculated the repeatability of responses to parasitism, and used a generalized linear mixed model to also test for potentially confounding effects of ordinal date, presentation order, and clutch size. We found that repeatability in response to brood parasitism in this host species is high, and the best model predicting responses to sequential artificial parasitism includes only nest identity. This result is consistent with a critical assumption about egg rejection in this cowbird host as an evolved adaptation in response to brood parasitism.


2021 ◽  
Vol 8 (1) ◽  
pp. 201615
Author(s):  
Mark E. Hauber ◽  
Sarah K. Winnicki ◽  
Jeffrey P. Hoover ◽  
Daniel Hanley ◽  
Ian R. Hays

Some hosts of avian brood parasites reduce or eliminate the costs of parasitism by removing foreign eggs from the nest (rejecter hosts). In turn, even acceptor hosts typically remove most non-egg-shaped objects from the nest, including broken shells, fallen leaves and other detritus. In search for the evolutionary origins and sensory mechanisms of egg rejection, we assessed where the potential threshold between egg recognition and nest hygiene may lie when it comes to stimulus shape. Most previous studies applied comparisons of egg-sized objects with non-continuous variation in shape. Here, instead, we used two series of three-dimensional-printed objects, designed a priori to increasingly diverge from natural eggs along two axes (width or angularity) of shape variation. As predicted, we detected transitions from mostly acceptance to mostly rejection in the nests of American robins Turdus migratorius along each of the two axes. Our methods parallel previous innovations in egg-rejection studies through the use of continuous variation in egg coloration and maculation contrast, to better understand the sensory limits and thresholds of variation in egg recognition and rejection in diverse hosts of avian brood parasites.


Sign in / Sign up

Export Citation Format

Share Document