Evaluation of Metal Ion Release from Ti6Al4V and Co-Cr-Mo Casting Alloys: In Vivo and In Vitro Study

2013 ◽  
Vol 23 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Amal A. El Sawy ◽  
Mohammed A. Shaarawy
2021 ◽  
Vol 12 ◽  
Author(s):  
Sung-Hyun Kim ◽  
Jin Hee Lee ◽  
Kikyung Jung ◽  
Jun-Young Yang ◽  
Hyo-Sook Shin ◽  
...  

Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major “factor” for skin sensitization.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 368 ◽  
Author(s):  
Sammy Noumbissi ◽  
Antonio Scarano ◽  
Saurabh Gupta

This review of literature paper was done in order to conduct a review of the literature and an assessment of the effects of titanium implant corrosion on peri-implant health and success in the oral environment. This paper evaluates and critically reviews the findings of the multiple in-depth in vivo and in vitro studies that are related to corrosion aspects of the titanium and its alloys. A literature survey was conducted by electronic search in Medline and studies that were published between 1940 and August 2018 were selected. The search terms used were types of corrosion, corrosion of titanium implants, titanium corrosion, metal ion release from the titanium implants, fretting and pitting corrosion, implant corrosion, peri implantitis, and corrosion. Both in vivo and in vitro studies were also included in the review. The search and selection resulted in 64 articles. These articles were divided on the basis of their context to different kinds of corrosion related to titanium dental implants. It is evident that metal ions are released from titanium and titanium alloy dental implants as a result of corrosion. Corrosion of implants is multifactorial, including electrical, chemical, and mechanical factors, which have an effect on the peri-implant tissues and microbiota. The literature surveyed showed that corrosion related to titanium and its alloys has an effect on the health of peri-implant soft and hard tissue and the long term survival of metal dental implants. It can be concluded that presence of the long-term corrosion reaction along with continuous corrosion leads to the release of ions into the peri-implant tissue but also to a disintegration of the implant that contribute to material fatigue and even fracture of the abutments and implant body or both. This combined impact of the corrosion, bacterial activity, chemical reactions, and functional stresses are to be looked at as important factors of implant failure. The findings can be used to explore the possible strategies of research to investigate the biological impact of implant materials.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 282 ◽  
Author(s):  
Mokhamad Fakhrul Ulum ◽  
Wahyu Caesarendra ◽  
Reza Alavi ◽  
Hendra Hermawan

Absorbable metals have been introduced as materials to fabricate temporary medical implants. Iron, magnesium and zinc have been considered as major base elements of such metals. The metallurgical characterization and in-vitro corrosion assessment of these metals have been covered by the new ASTM standards F3160 and F3268. However, the in-vivo corrosion characterization and assessment of absorbable metal implants are not yet well established. The corrosion of metals in the in-vivo environment leads to metal ion release and corrosion product formation that may cause excessive toxicity. The aim of this work is to introduce the techniques to assess absorbable metal implants and their in-vivo corrosion behavior. This contains the existing approaches, e.g., implant retrieval and histological analysis, ultrasonography and radiography, and the new techniques for real-time in-vivo corrosion monitoring.


2012 ◽  
Vol 13 (3) ◽  
pp. 376-381 ◽  
Author(s):  
CM Manjith ◽  
Srinivas Kumar Karnam ◽  
A Naveen Reddy

ABSTRACT Aim The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Materials and methods Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. Conclusion The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. Clinical significance The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations. How to cite this article Karnam SK, Reddy AN, Manjith CM. Comparison of Metal Ion Release from Different Bracket Archwire Combinations: An in vitro Study. J Contemp Dent Pract 2012;13(3):376-381.


Author(s):  
C.G. Figueiredo-Pina ◽  
V. Moreira ◽  
R. Colaço ◽  
A.P. Serro

The relative motion between the zirconia abutment and the titanium implant in the presence of saliva might lead to tribocorrosion and consequently metal ion release and ion contamination of peri -implant tissues. In order to study this issue tribocorrosion, tests were performed in open circuit potential (OCP) and during anodic polarization in two different configurations: titanium ball pin on zirconia plate and zirconia ball pin on titanium plate. For both configurations, the OCP decreases and the anodic current increases during the wear testing. The results showed different tribocorrosion response between configurations. The higher OCP drop and anodic current was obtained for the configuration titanium ball pin on zirconia plate.


2014 ◽  
Author(s):  
Ivo Dumic-Cule ◽  
Dunja Rogic ◽  
Damir Jezek ◽  
Lovorka Grgurevic ◽  
Slobodan Vukicevic

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 857
Author(s):  
Lasni Samalka Kumarasinghe ◽  
Neethu Ninan ◽  
Panthihage Ruvini Lakshika Dabare ◽  
Alex Cavallaro ◽  
Esma J. Doğramacı ◽  
...  

The metal ion release characteristics and biocompatibility of meta-based materials are key factors that influence their use in orthodontics. Although stainless steel-based alloys have gained much interest and use due to their mechanical properties and cost, they are prone to localised attack after prolonged exposure to the hostile oral environment. Metal ions may induce cellular toxicity at high dosages. To circumvent these issues, orthodontic brackets were coated with a functional nano-thin layer of plasma polymer and further immobilised with enantiomers of tryptophan. Analysis of the physicochemical properties confirmed the presence of functional coatings on the surface of the brackets. The quantification of metal ion release using mass spectrometry proved that plasma functionalisation could minimise metal ion release from orthodontic brackets. Furthermore, the biocompatibility of the brackets has been improved after functionalisation. These findings demonstrate that plasma polymer facilitated surface functionalisation of orthodontic brackets is a promising approach to reducing metal toxicity without impacting their bulk properties.


Sign in / Sign up

Export Citation Format

Share Document