Papaya Leaf Curl Guangdong Virus and Ageratum Yellow Vein Virus Associated with Leaf Curl Disease of Tobacco in China

2012 ◽  
Vol 161 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Caixia Yang ◽  
Limin Zheng ◽  
Zujian Wu ◽  
Lianhui Xie
Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 177-177 ◽  
Author(s):  
Z. Liu ◽  
C. X. Yang ◽  
S. P. Jia ◽  
P. C. Zhang ◽  
L. Y. Xie ◽  
...  

A leaf curling disease was observed on 7% of tobacco plants during December 2005 in research plots in the Cangshan District of Fuzhou, Fujian, China. Tobacco plants were infested with Bemisia tabaci, suggesting begomovirus etiology. To identify possible begomoviruses, total DNA was extracted from four symptomatic leaf samples (F1, F2, F3, and F4). The degenerate primers PA and PB were used to amplify part of the intergenic region and AV2 gene of DNA-A-like molecules (3). A 500-bp DNA fragment was amplified by PCR from all four samples. The PCR products were cloned and sequenced (GenBank Accession Nos. EF531601–EF531603 and EF527823). Alignment of the 500-bp sequences for the four isolates indicated that they shared 98.5 to 99.6% nt identity, suggesting that the plants were all infected by the same virus. Overlapping primers TV-Full-F (5′-GGATCCTCTTTTGAACGAGTTTCC-3′) and TV-Full-R (5′-GGATCCCACATGTTTAAAATAATAC-3′) were then designed to amplify the full-length DNA-A from sample F2. The sequence was 2,754 nucleotides long (GenBank Accession No. EF527823). A comparison with other begomoviruses indicated the F2 DNA-A had the highest nucleotide sequence identity (95.7%) with Ageratum yellow vein virus (AYVV; GenBank Accession No. X74516) from Singapore. To further test whether DNAβ was associated with the four viral isolates, a universal DNAβ primer pair (beta 01 and beta 02) was used (4). An amplicon of approximately 1.3 kb was obtained from all samples. The DNAβ molecule from F2 was then cloned and sequenced. F2 DNAβ was 1,345 nucleotides long (GenBank Accession No. EF527824), sharing the highest nucleotide sequence identity with the DNAβ of Tomato leaf curl virus (97.2%) from Taiwan (GenBank Accession No. AJ542495) and AYVV (88.8%) from Singapore (GenBank Accession No. AJ252072). The disease agent was transmitted to Nicotiana tabacum, N. glutinosa, Ageratum conyzoides, Oxalis corymbosa, and Phyllanthus urinaria plants by whiteflies (B. tabaci) when field infected virus isolate F2 was used as inoculum. In N. tabacum and N. glutinosa plants, yellow vein symptoms were initially observed in young leaves. However, these symptoms disappeared later during infection and vein swelling and downward leaf curling symptoms in N. tabacum and vein swelling and upward leaf curling in N. glutinosa were observed. In A. conyzoides, O. corymbosa, and P. urinaria plants, typical yellow vein symptoms were observed. The presence of the virus and DNAβ in symptomatic plants was verified by PCR with primer pairs TV-Full-F/TV-Full-R and beta 01/beta 02, respectively. The above sequence and whitefly transmission results confirmed that the tobacco samples were infected by AYVV. In China, Tobacco leaf curl Yunnan virus, Tobacco curly shoot virus, and Tomato yellow leaf curl China virus were reported to be associated with tobacco leaf curl disease (1,3). To our knowledge, this is the first report of AYVV infecting tobacco in China. A. conyzoides is a widely distributed weed in south China and AYVV was reported in A. conyzoides in Hainan Island, China (2). Therefore, this virus may pose a serious threat to tobacco production in south China. References: (1) Z. Li et al. Phytopathology 95:902, 2005. (2) Q. Xiong et al. Phytopathology 97:405, 2007. (3) X. Zhou et al. Arch. Virol. 146:1599, 2001. (4) X. Zhou et al. J. Gen. Virol. 84:237, 2003.


2013 ◽  
Vol 24 (2) ◽  
pp. 188-198 ◽  
Author(s):  
V. Venkataravanappa ◽  
C. N. Lakshminarayana Reddy ◽  
A. Devaraju ◽  
Salil Jalali ◽  
M. Krishna Reddy

Viruses ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 189-200 ◽  
Author(s):  
Muhammad Shahid ◽  
Masato Ikegami ◽  
Abdul Waheed ◽  
Rob Briddon ◽  
Keiko Natsuaki

2020 ◽  
Vol 165 (9) ◽  
pp. 2099-2103 ◽  
Author(s):  
Manish Kumar ◽  
R. Vinoth Kumar ◽  
Supriya Chakraborty

2010 ◽  
Vol 76 (4) ◽  
pp. 287-291 ◽  
Author(s):  
Tsunaki Andou ◽  
Ayako Yamaguchi ◽  
Shinji Kawano ◽  
Kunimasa Kawabe ◽  
Shigenori Ueda ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Zhai ◽  
Anirban Roy ◽  
Hao Peng ◽  
Daniel L. Mullendore ◽  
Gurpreet Kaur ◽  
...  

Croton yellow vein mosaic virus (CYVMV), a species in the genus Begomovirus, is a prolific monopartite begomovirus in the Indian sub-continent. CYVMV infects multiple crop plants to cause leaf curl disease. Plants have developed host RNA silencing mechanisms to defend the threat of viruses, including CYVMV. We characterized four RNA silencing suppressors, namely, V2, C2, and C4 encoded by CYVMV and betasatellite-encoded C1 protein (βC1) encoded by the cognate betasatellite, croton yellow vein betasatellite (CroYVMB). Their silencing suppressor functions were verified by the ability of restoring the β-glucuronidase (GUS) activity suppressed by RNA silencing. We showed here for the first time that V2 was capable of self-interacting, as well as interacting with the V1 protein, and could be translocalized to the plasmodesmata in the presence of CYVMV. The knockout of either V2 or V1 impaired the intercellular mobility of CYVMV, indicating their novel coordinated roles in the cell-to-cell movement of the virus. As pathogenicity determinants, each of V2, C2, and C4 could induce typical leaf curl symptoms in Nicotiana benthamiana plants even under transient expression. Interestingly, the transcripts and proteins of all four suppressors could be detected in the systemically infected leaves with no correlation to symptom induction. Overall, our work identifies four silencing suppressors encoded by CYVMV and its cognate betasatellite and reveals their subcellular localizations, interaction behavior, and roles in symptom induction and intercellular virus movement.


Sign in / Sign up

Export Citation Format

Share Document