Association of a begomovirus-satellite complex with yellow vein and leaf curl disease of hollyhock (Alcea rosea) in India

2020 ◽  
Vol 165 (9) ◽  
pp. 2099-2103 ◽  
Author(s):  
Manish Kumar ◽  
R. Vinoth Kumar ◽  
Supriya Chakraborty
2013 ◽  
Vol 24 (2) ◽  
pp. 188-198 ◽  
Author(s):  
V. Venkataravanappa ◽  
C. N. Lakshminarayana Reddy ◽  
A. Devaraju ◽  
Salil Jalali ◽  
M. Krishna Reddy

2022 ◽  
Author(s):  
Hajra Azeem ◽  
Rashida Perveen ◽  
Muhammad Nouman Tahir ◽  
Ummad-ud-din Umar ◽  
Fatih Ölmez ◽  
...  

Abstract I. Background: Hollyhock (Alcea rosea) is an ornamental plant belonging to the Malvaceae family and has a remarkable aesthetic and medicinal value. Previously in Pakistan, the hollyhock plant was not found to be infected by begomovirus and the plant first time showed the symptoms of typical leaf curling, puckering as well as thickened veins. II. Methods and Results: During the year 2018, symptomatic samples of the hollyhock plants were collected that exhibited characteristic typical leaf curling, puckering as well as thickened veins. DNA was extracted from the samples and the PCR technique was optimized for the detection of begomovirus followed by sequencing. The samples were detected to be infected with begomovirus by using Av/Ac core, Begomo 01/02, and CLCV 01/02 primer showed positive results with 579bp, 2.8kb, and 1.1kb nucleotide respectively. The betasatellite was amplified by using beta01/02 and CLCuMuBF11/R33 showed positive results with 1400bp and 481bp respectively. Sequencing results showed that diseased hollyhock plants were associated with Cotton leaf curl Multan virus-Rajasthan strain along with Cotton leaf curl Multan betasatellite. III. Conclusion: Hollyhock plants infected by begomovirus has been reported for the first time as a possible source of virus inoculum from Pakistan.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 177-177 ◽  
Author(s):  
Z. Liu ◽  
C. X. Yang ◽  
S. P. Jia ◽  
P. C. Zhang ◽  
L. Y. Xie ◽  
...  

A leaf curling disease was observed on 7% of tobacco plants during December 2005 in research plots in the Cangshan District of Fuzhou, Fujian, China. Tobacco plants were infested with Bemisia tabaci, suggesting begomovirus etiology. To identify possible begomoviruses, total DNA was extracted from four symptomatic leaf samples (F1, F2, F3, and F4). The degenerate primers PA and PB were used to amplify part of the intergenic region and AV2 gene of DNA-A-like molecules (3). A 500-bp DNA fragment was amplified by PCR from all four samples. The PCR products were cloned and sequenced (GenBank Accession Nos. EF531601–EF531603 and EF527823). Alignment of the 500-bp sequences for the four isolates indicated that they shared 98.5 to 99.6% nt identity, suggesting that the plants were all infected by the same virus. Overlapping primers TV-Full-F (5′-GGATCCTCTTTTGAACGAGTTTCC-3′) and TV-Full-R (5′-GGATCCCACATGTTTAAAATAATAC-3′) were then designed to amplify the full-length DNA-A from sample F2. The sequence was 2,754 nucleotides long (GenBank Accession No. EF527823). A comparison with other begomoviruses indicated the F2 DNA-A had the highest nucleotide sequence identity (95.7%) with Ageratum yellow vein virus (AYVV; GenBank Accession No. X74516) from Singapore. To further test whether DNAβ was associated with the four viral isolates, a universal DNAβ primer pair (beta 01 and beta 02) was used (4). An amplicon of approximately 1.3 kb was obtained from all samples. The DNAβ molecule from F2 was then cloned and sequenced. F2 DNAβ was 1,345 nucleotides long (GenBank Accession No. EF527824), sharing the highest nucleotide sequence identity with the DNAβ of Tomato leaf curl virus (97.2%) from Taiwan (GenBank Accession No. AJ542495) and AYVV (88.8%) from Singapore (GenBank Accession No. AJ252072). The disease agent was transmitted to Nicotiana tabacum, N. glutinosa, Ageratum conyzoides, Oxalis corymbosa, and Phyllanthus urinaria plants by whiteflies (B. tabaci) when field infected virus isolate F2 was used as inoculum. In N. tabacum and N. glutinosa plants, yellow vein symptoms were initially observed in young leaves. However, these symptoms disappeared later during infection and vein swelling and downward leaf curling symptoms in N. tabacum and vein swelling and upward leaf curling in N. glutinosa were observed. In A. conyzoides, O. corymbosa, and P. urinaria plants, typical yellow vein symptoms were observed. The presence of the virus and DNAβ in symptomatic plants was verified by PCR with primer pairs TV-Full-F/TV-Full-R and beta 01/beta 02, respectively. The above sequence and whitefly transmission results confirmed that the tobacco samples were infected by AYVV. In China, Tobacco leaf curl Yunnan virus, Tobacco curly shoot virus, and Tomato yellow leaf curl China virus were reported to be associated with tobacco leaf curl disease (1,3). To our knowledge, this is the first report of AYVV infecting tobacco in China. A. conyzoides is a widely distributed weed in south China and AYVV was reported in A. conyzoides in Hainan Island, China (2). Therefore, this virus may pose a serious threat to tobacco production in south China. References: (1) Z. Li et al. Phytopathology 95:902, 2005. (2) Q. Xiong et al. Phytopathology 97:405, 2007. (3) X. Zhou et al. Arch. Virol. 146:1599, 2001. (4) X. Zhou et al. J. Gen. Virol. 84:237, 2003.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Zhai ◽  
Anirban Roy ◽  
Hao Peng ◽  
Daniel L. Mullendore ◽  
Gurpreet Kaur ◽  
...  

Croton yellow vein mosaic virus (CYVMV), a species in the genus Begomovirus, is a prolific monopartite begomovirus in the Indian sub-continent. CYVMV infects multiple crop plants to cause leaf curl disease. Plants have developed host RNA silencing mechanisms to defend the threat of viruses, including CYVMV. We characterized four RNA silencing suppressors, namely, V2, C2, and C4 encoded by CYVMV and betasatellite-encoded C1 protein (βC1) encoded by the cognate betasatellite, croton yellow vein betasatellite (CroYVMB). Their silencing suppressor functions were verified by the ability of restoring the β-glucuronidase (GUS) activity suppressed by RNA silencing. We showed here for the first time that V2 was capable of self-interacting, as well as interacting with the V1 protein, and could be translocalized to the plasmodesmata in the presence of CYVMV. The knockout of either V2 or V1 impaired the intercellular mobility of CYVMV, indicating their novel coordinated roles in the cell-to-cell movement of the virus. As pathogenicity determinants, each of V2, C2, and C4 could induce typical leaf curl symptoms in Nicotiana benthamiana plants even under transient expression. Interestingly, the transcripts and proteins of all four suppressors could be detected in the systemically infected leaves with no correlation to symptom induction. Overall, our work identifies four silencing suppressors encoded by CYVMV and its cognate betasatellite and reveals their subcellular localizations, interaction behavior, and roles in symptom induction and intercellular virus movement.


Plant Disease ◽  
2021 ◽  
Author(s):  
Achuit Kumar Singh ◽  
Brijesh K Yadav ◽  
Ram Krishna ◽  
R Vinoth Kumar ◽  
Gyan P Mishra ◽  
...  

Whitefly-transmitted begomoviruses cause severe diseases in numerous economically important dicotyledonous plants. In recent years, okra enation leaf curl disease (OELCuD) emerged as a serious threat to okra (Abelmoschus esculentus L. Moench) cultivation in the Indian subcontinent. The present study reports the association of a monopartite begomovirus (bhendi yellow vein mosaic virus - BYVMV) and betasatellite (bhendi yellow vein mosaic betasatellite - BYVB) with OELCuD in the Mau region of Uttar Pradesh, India. The BYVMV alone inoculated N benthamiana and A esculentus cv. Pusa Sawani plants developed mild symptoms. Co-inoculation of BYVMV and BYVB resulted in a reduced incubation period, an increased symptom severity and an enhanced BYVMV accumulation (by Southern hybridization and qPCR). This is the first study which satisfies Koch’s postulates for OELCuD in its natural host. Activities of various antioxidative enzymes were significantly increased in the virus inoculated okra plants. Differential responses in various biochemical components (such as photosynthetic pigments, phenol, proline, sugar) in diseased okra plants were observed. This change in phytochemical responses is of significant importance in understanding its impact on virus pathogenesis and disease development.


Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 101-101 ◽  
Author(s):  
S. Mansoor ◽  
S. H. Khan ◽  
M. Hussain ◽  
Y. Zafar ◽  
M. S. Pinner ◽  
...  

Whitefly-transmitted geminiviruses (begomoviruses) cause heavy losses to many food and fiber crops in Pakistan. Many weeds also show symptoms typical of begomoviruses. Ageratum (Ageratum conyzoides) is a common perennial weed in Pakistan, growing along irrigation canals, that often shows symptoms, such as yellow vein and mosaic, suggesting infection by a begomovirus. To confirm this, symptomatic and asymptomatic ageratum plants were collected from three locations in the Punjab Province of Pakistan, and total DNA was isolated, subjected to agarose gel electrophoresis, transferred to a nylon membrane, and Southern blotted. Total DNA isolated from cotton infected with Cotton leaf curl virus (CLCuV), tomato infected with Tomato leaf curl virus from Pakistan (TLCV-Pak), tobacco infected with African cassava mosaic virus (ACMV) from Nigeria, and healthy tobacco were included as controls. A full-length clone of CLCuV DNA A was labeled with [32P]dCTP by oligo-labeling and hybridized at medium stringency. The probe detected characteristic geminivirus DNA forms in symptomatic ageratum and plants infected with CLCuV, TLCV-Pak, and ACMV, while no signal was detected in asymptomatic ageratum from the field or healthy tobacco. To confirm infection by a begomovirus, degenerate primers WTGF (5′-GATTGTACGCGTCCDCCTTTAATTT GAAYBGG-3′), designed in the rep gene of begomoviruses, and WTGR (5′-TANACGCGTGGC TTCKRTACATGGCCTDT-3′), designed in the coat protein gene of DNA A of begomoviruses, were used in polymerase chain reaction (PCR). Degenerate primers (PBLv2040 and PCRc1) also were used in PCR (2). A product of expected size (≈1.4 kb) was obtained with DNA A primers from symptomatic ageratum, while no product was obtained with DNA B primers in the same sample. Previously we were unable to detect a DNA component equivalent to begomovirus DNA B in cotton showing symptoms of cotton leaf curl disease (1). We recently reported a novel circular DNA molecule that was approximately half as long as the full-length DNA A (CLCuV DNA-1) associated with CLCuV that share homology to plant nanoviruses (1). The supercoiled replicative form of viral DNA isolated from infected ageratum plants indicated the presence of smaller molecules, as was found in cotton leaf curl disease, suggesting that a nanovirus-like molecule might be associated with ageratum yellow vein disease. A duplicate blot of samples used in Southern hybridization with the DNA A probe was prepared, and a probe of the full-length clone of the nanovirus-like molecule (CLCuV DNA-1) was prepared as described for DNA A. The probe detected characteristic nanovirus DNA forms in ageratum with yellow vein symptoms and cotton infected with CLCuV, while no signal was detected in plants infected with TLCV-Pak or ACMV, healthy tobacco, or asymptomatic ageratum. Abutting primers PB2-F and PB2R (1), designed based on the CLCuV DNA-1 sequence, were unable to amplify a PCR product from ageratum with yellow vein symptoms, suggesting the nanovirus-like molecule associated with ageratum yellow vein disease is distinct from CLCuV DNA-1. Our results show that yellow vein disease of ageratum in Pakistan is associated with a begomovirus infection and single-stranded circular DNA molecule with similarity to CLCuV DNA-1. References: (1) S. Mansoor et al. Virology 259:190, 1999. (2) M. R. Rojas et al., Plant Dis. 77:340, 1993.


Sign in / Sign up

Export Citation Format

Share Document