Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos

2015 ◽  
Vol 59 (4) ◽  
pp. 455-468 ◽  
Author(s):  
Jianmin Su ◽  
Yongsheng Wang ◽  
Xupeng Xing ◽  
Lei Zhang ◽  
Hongzheng Sun ◽  
...  
2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1499
Author(s):  
Zhiguo Liu ◽  
Guangming Xiang ◽  
Kui Xu ◽  
Jingjing Che ◽  
Changjiang Xu ◽  
...  

Somatic cell nuclear transfer (SCNT) is not only a valuable tool for understanding nuclear reprogramming, but it also facilitates the generation of genetically modified animals. However, the development of SCNT embryos has remained an uncontrollable process. It was reported that the SCNT embryos that complete the first cell division sooner are more likely to develop to the blastocyst stage, suggesting their better developmental competence. Therefore, to better understand the underlying molecular mechanisms, RNA-seq of pig SCNT embryos that were early-dividing (24 h postactivation) and late-dividing (36 h postactivation) was performed. Our analysis revealed that early- and late-dividing embryos have distinct RNA profiles, and, in all, 3077 genes were differentially expressed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that early-dividing embryos exhibited higher expression in genes that participated in the meiotic cell cycle, while enrichment of RNA processing- and translation-related genes was found in late-dividing embryos. There are also fewer somatic memory genes such as FLRT2, ADAMTS1, and FOXR1, which are abnormally activated or suppressed in early-dividing cloned embryos. These results show that early-dividing SCNT embryos have different transcriptional profiles than late-dividing embryos. Early division of SCNT embryos may be associated with their better reprogramming capacity, and somatic memory genes may act as a reprogramming barrier in pig SCNT reprogramming.


2018 ◽  
Vol 24 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Shuang Liang ◽  
Zheng-Wen Nie ◽  
Jing Guo ◽  
Ying-Jie Niu ◽  
Kyung-Tae Shin ◽  
...  

AbstractMicroRNA (miR)-29b plays a crucial role during somatic cell reprogramming. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos, as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared within vitrofertilized embryos. In addition, miR-29b regulates the expression of DNA methyltransferases (Dnmt3a/3bandDnmt1) in bovine SCNT embryos. We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency and downregulation inhibits developmental potency. Nevertheless, the quality of bovine SCNT embryos at the blastocyst stage improved significantly. The expression of pluripotency factors and cellular proliferation were significantly higher in blastocysts from the miR-29b overexpression group than the control and downregulation groups. In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and downregulation groups. Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


2006 ◽  
Vol 18 (2) ◽  
pp. 139 ◽  
Author(s):  
S. Mitalipov ◽  
Q. Zhou ◽  
J. Byrne ◽  
W.-Z. Ji ◽  
D. Wolf

Successful reprogramming of somatic cell nuclei after nuclear transfer requires active remodeling by factors present in the nonactivated cytoplast. High levels of maturation promoting factor (MPF) activity are associated with this remodeling process which includes nuclear envelope breakdown (NEBD), premature chromosome condensation (PCC), and spindle formation. In this study, we examined the extent of nuclear remodeling in monkey somatic cell nuclear transfer (SCNT) embryos by monitoring the dynamics of lamin A/C appearance, as detected immunocytochemically, following fusion of donor cells with recipient cytoplasts. In the control, intracytoplasmic sperm injection (ICSI) fertilized embryos, lamin A/C was readily detected at the pronuclear stage but disappeared in early cleaving embryos only to reappear by the morula stage in association with the activation of the embryonic genome. We initially documented lack or incomplete NEBD and PCC in SCNT embryos in the form of retention of lamin A/C signal emanating from the donor nucleus. This observation was consistent with premature cytoplast activation due to the manipulation procedures. SCNT embryos produced by this approach typically arrested at the morula stage. Significant modifications in nuclear transfer protocols were then employed. Optimization of procedures resulted in robust NEBD and PCC, as indicated by loss of lamin A/C signal from the donor cell. Also, significant improvement of SCNT embryo development in vitro was observed, with a markedly improved blastocyst formation rate (21%). Several different fetal and adult somatic cell types screened as nuclear donors supported blastocyst development. SCNT blastocysts displayed a pattern of Oct-4 expression similar to that of sperm fertilized counterparts, indicative of efficient nuclear reprogramming. However, no pregnancies were established following a preliminary trial of 8 embryo transfers with 48 cloned embryos. Nevertheless, our results represent a breakthrough in efforts to produce cloned monkeys and should provide the resources required for the derivation of embryonic stem cells from SCNT blastocysts.


2018 ◽  
Vol 30 (1) ◽  
pp. 155
Author(s):  
W.-J. Zhou ◽  
S. Liang ◽  
X.-S. Cui

MicroRNAs (miRNAs) are small non-coding RNAs with important roles in diverse cellular processes. miR-29b plays a crucial role during somatic cell reprogramming. However, studies of the function of miR-29b in embryogenesis are limited. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared with IVF embryos (P < 0.05). To determine the function of miR-29b in the bovine SCNT embryo, we microinjected a miR-29b mimic and inhibitor into bovine SCNT zygotes. The results showed that miR-29b significantly decreased the expression of Dnmts (Dnmt3a/3b and Dnmt1) in bovine SCNT embryos (P < 0.05). We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency (P > 0.05) but down-regulation inhibits developmental potency (P < 0.05). Although miR-29b overexpression does not improve the developmental potency of bovine SCNT embryos, the quality of bovine SCNT embryos at the blastocyst stage improved significantly (P < 0.05). The expression of pluripotency factors (OCT4 and SOX2) and cellular proliferation rate were significantly higher in blastocysts from the miR-29b overexpression group than the control and down-regulation groups (P < 0.05). In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and down-regulation groups (P < 0.05). Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


2005 ◽  
Vol 7 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Yoichiro Hoshino ◽  
Masaki Uchida ◽  
Yoshiki Shimatsu ◽  
Masashi Miyake ◽  
Yasumitsu Nagao ◽  
...  

2015 ◽  
Vol 27 (3) ◽  
pp. 544 ◽  
Author(s):  
H. S. Pedersen ◽  
Y. Liu ◽  
R. Li ◽  
S. Purup ◽  
P. Løvendahl ◽  
...  

Pig oocytes have been used increasingly for in vitro production techniques in recent years. The slaughterhouse-derived oocytes that are often used are mostly of prepubertal origin. The aims of the present study were to compare the developmental competence between pre- and postpubertal pig oocytes, and to develop a simple and practical method for the selection of prepubertal pig oocytes for parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) based on oocyte morphology after IVM and oocyte inside zona pellucida (ZP) diameter (‘small’ ≤110 µm; ‘medium’ >110 µm; ‘large’ ≥120 µm). Meiotic competence and blastocyst rates after PA and SCNT of prepubertal oocytes increased with oocyte size, with the large prepubertal oocytes reaching a level similar to postpubertal oocytes after SCNT. Blastocyst cell number was not related to oocyte inside ZP diameter and oocyte donor to the same extent as blastocyst rate. Very low blastocyst rates were obtained after PA of morphologically bad pre- and postpubertal oocytes. In conclusion, measurement of inside ZP diameter combined with morphological selection is useful to remove incompetent oocytes. Further studies are needed to clarify the relative importance of cytoplasmic volume and stage in oocyte growth phase.


Sign in / Sign up

Export Citation Format

Share Document