Liver mitochondrial oxygen consumption and proton leak kinetics in broilers supplemented with dietary copper or zinc following coccidiosis challenge

2016 ◽  
Vol 101 (5) ◽  
pp. e210-e215 ◽  
Author(s):  
G. Acetoze ◽  
R. Kurzbard ◽  
K. C. Klasing ◽  
J. J. Ramsey ◽  
H. A. Rossow
2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
G. Acetoze ◽  
K. L. Weber ◽  
J. J. Ramsey ◽  
H. A. Rossow

The objective of this research is to evaluate liver mitochondrial oxygen consumption and proton leak kinetics in progeny from two lineages of Angus bulls with high and low residual feed intake (RFI). Two Angus bulls were selected based on results from a genetic test for RFI and were used as sires. Eight offspring at 10-11 months of age from each sire were housed in individual pens for 70–105 days following a diet adaptation period of 14 days. Progeny of the low RFI sire had 0.57 kg/d (P=0.05) lower average RFI than progeny of the high RFI sire. There was no difference in dry matter intake between low and high RFI steers, but low RFI steers gained more body weight (P=0.02) and tended to have higher average daily gains (P=0.07). State 3 and State 4 respiration, RCR, and proton leak did not differ between high and low RFI steers (P=0.96, P=0.81, P=0.93, and P=0.88, resp.). Therefore, the increase in bodyweight gain which distinguished the low RFI steers from the high RFI steers may be associated with other metabolic mechanisms that are not associated with liver mitochondrial respiration and proton leak kinetics.


1992 ◽  
Vol 12 (5) ◽  
pp. 381-386 ◽  
Author(s):  
F. Buttgereit ◽  
M. D. Brand ◽  
M. Müller

The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.


Metabolism ◽  
2015 ◽  
Vol 64 (3) ◽  
pp. 416-427 ◽  
Author(s):  
Madlyn I. Frisard ◽  
Yaru Wu ◽  
Ryan P. McMillan ◽  
Kevin A. Voelker ◽  
Kristin A. Wahlberg ◽  
...  

2020 ◽  
Author(s):  
Pierre Eyenga ◽  
Damien Roussel ◽  
Benjamin Rey ◽  
Patrice Ndille ◽  
Loic Teulier ◽  
...  

Abstract Background: To describe the effect of mechanical ventilation on diaphragm mitochondrial oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and cytochrome-c oxidase activity and content, and their relationship to diaphragm strength in an experimental model of sepsis.Methods: A cecal ligation and puncture (CLP) protocol was performed in 12 rats while 12 controls underwent sham-operation. Half of the rats in each group were paralyzed and mechanically ventilated. We performed blood gas analysis and lactic acid assays 6 hours after surgery. Afterwards, we measured diaphragm strength and mitochondrial oxygen consumption, ATP and ROS generation, and cytochrome-c oxidase activity. We also measured malondialdehyde (MDA) content as an index of lipid peroxidation, and mRNA expression of the pro-inflammatory interleukin-1β (IL-1β) in diaphragms.Results: CLP rats showed severe hypotension, metabolic acidosis, and upregulation of diaphragm IL-1β mRNA expression. Compared to sham controls, spontaneously breathing CLP rats showed lower diaphragm force and increased susceptibility to fatigue, along with depressed mitochondrial oxygen consumption and ATP production and cytochrome-c oxidase activity. These rats also showed increased mitochondrial ROS generation and MDA content. Mechanical ventilation markedly restored mitochondrial oxygen consumption and ATP production in CLP rats; lowered mitochondrial ROS production by the complex 3; and preserved cytochrome-c oxidase activity.Conclusion: In an experimental model of sepsis, early initiation of mechanical ventilation restores diaphragm mitochondrial function.


2011 ◽  
pp. S177-S184 ◽  
Author(s):  
Z. KOJIC ◽  
K. GOPCEVIC ◽  
D. MARINKOVIC ◽  
G. TASIC

Angiotensin converting enzyme inhibitors are widely used in therapy of cardiovascular diseases. However, the consensus on effects of these inhibitors in control of myocardial oxygen consumption during the process of experimental hypercholesterolemia and under the condition of endothelial dysfunction has not been reached. Here we examined effects of captopril, an angiotensin converting enzyme inhibitor, on serum lipid levels and oxygen consumption rate in mitochondria isolated from heart of rabbits treated by hypercholesterolemic diet. During the twelve-week period, the Chinchilla male rabbits were daily treated by saline (controls); 1 % cholesterol diet; 5 mg/kg/day captopril or 1 % cholesterol + 5 mg/kg/day captopril. Total- and high-density lipoprotein cholesterol and triglyceride in serum were measured spectrophotometricly. The left ventricle mitochondrial fraction was isolated and myocardial oxygen consumption was measured by Biological Oxygen Monitor. Mitochondria isolated from hearts of rabbits exposed to hypercholesterolemic diet showed significantly reduced respiration rates (state 3 and state 4) with altering adenosine diphosphate/oxygen ratio, whereas the respiratory control ratio was not affected when compared to controls. Mitochondria from cholesterol/captopril–treated animals showed significantly reduced respiration rates without altering adenosine diphosphate/oxygen ratio index or respiratory control ratio. Although captopril did not exert the favorable effect on serum lipid levels in cholesterol-treated animals, it restored the mitochondrial oxygen consumption. Further studies should be performed to define the underlying physiological and/or pathophysiological mechanisms and clinical implications.


1992 ◽  
Vol 12 (2) ◽  
pp. 109-114 ◽  
Author(s):  
F. Buttgereit ◽  
M. D. Brand ◽  
M. Müller

The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In contrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.


Sign in / Sign up

Export Citation Format

Share Document