scholarly journals In vitro gas and methane production in rumen fluid from dairy cows fed grass silages differing in plant maturity, compared to in vivo data

2018 ◽  
Vol 102 (4) ◽  
pp. 843-852 ◽  
Author(s):  
F. M. Macome ◽  
W. F. Pellikaan ◽  
W. H. Hendriks ◽  
D. Warner ◽  
J. T. Schonewille ◽  
...  
animal ◽  
2017 ◽  
Vol 11 (4) ◽  
pp. 591-599 ◽  
Author(s):  
G. Klop ◽  
S van Laar-van Schuppen ◽  
W.F. Pellikaan ◽  
W.H. Hendriks ◽  
A. Bannink ◽  
...  

2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


1996 ◽  
Vol 1996 ◽  
pp. 24-24
Author(s):  
Angela R. Moss ◽  
Karen C. O'Callaghan

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal.In vitrotechniques using rumen fluid as an innoculum can be considered as models ofin vivorumen digestion and have been applied to estimate digestibility of feedstuffs. Thein vitrogas production technique (Menkeet. al., 1979) can be used successfully to estimate this but there has been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.Three pure substrates, glucose (G), pectin (P) and cellulose (C) (lg) were pre-wetted in 94ml of medium D (Theodorouet. al., 1994). inoculated with strained rumen fluid (from wether sheep. 10ml) and incubated without agitation for 72h at 39°C.


1997 ◽  
Vol 1997 ◽  
pp. 194-194
Author(s):  
Angela R. Moss ◽  
D. I. Givens

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal. In vitro techniques using rumen fluid as an innoculum can be considered as models of in vivo rumen digestion and have been applied to estimate digestibility of feedstuffs. The in vitro gas production technique (Menke et. al, 1979) can be used successfully to estimate this but there have been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 84
Author(s):  
Christiane Gruber-Dorninger ◽  
Johannes Faas ◽  
Barbara Doupovec ◽  
Markus Aleschko ◽  
Christian Stoiber ◽  
...  

The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and β-zearalenol (β-ZEL) was detected in lower concentrations. ZEN, α-ZEL and β-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and β-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3112
Author(s):  
Edward H. Cabezas-Garcia ◽  
Rebecca Danielsson ◽  
Mohammad Ramin ◽  
Pekka Huhtanen

This study evaluated if ranking dairy cows as low and high CH4 emitters using the GreenFeed system (GF) can be replicated in in vitro conditions using an automated gas system and its possible implications in terms of fermentation balance. Seven pairs of low and high emitters fed the same diet were selected on the basis of residual CH4 production, and rumen fluid taken from each pair incubated separately in the in vitro gas production system. In total, seven in vitro incubations were performed with inoculums taken from low and high CH4 emitting cows incubated in two substrates differing in forage-to-concentrate proportion, each without or with the addition of cashew nutshell liquid (CNSL) as an inhibitor of CH4 production. Except for the aimed differences in CH4 production, no statistical differences were detected among groups of low and high emitters either in in vivo animal performance or rumen fermentation profile prior to the in vitro incubations. The effect of in vivo ranking was poorly replicated in in vitro conditions after 48 h of anaerobic fermentation. Instead, the effects of diet and CNSL were more consistent. The inclusion of 50% barley in the diet (SB) increased both asymptotic gas production by 17.3% and predicted in vivo CH4 by 26.2%, when compared to 100% grass silage (S) substrate, respectively. The SB diet produced on average more propionate (+28 mmol/mol) and consequently less acetate compared to the S diet. Irrespective of CH4 emitter group, CNSL decreased predicted in vivo CH4 (26.7 vs. 11.1 mL/ g of dry matter; DM) and stoichiometric CH4 (CH4VFA; 304 vs. 235 moles/mol VFA), with these being also reflected in decreased total gas production per unit of volatile fatty acids (VFA). Microbial structure was assessed on rumen fluid sampled prior to in vitro incubation, by sequencing of the V4 region of 16S rRNA gene. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) did not show any differences between groups. Some differences appeared of relative abundance between groups in some specific OTUs mainly related to Prevotella. Genus Methanobrevibacter represented 93.7 ± 3.33% of the archaeal sequences. There were no clear differences between groups in relative abundance of Methanobrevibacter.


1996 ◽  
Vol 1996 ◽  
pp. 24-24
Author(s):  
Angela R. Moss ◽  
Karen C. O'Callaghan

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal. In vitro techniques using rumen fluid as an innoculum can be considered as models of in vivo rumen digestion and have been applied to estimate digestibility of feedstuffs. The in vitro gas production technique (Menke et. al., 1979) can be used successfully to estimate this but there has been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.Three pure substrates, glucose (G), pectin (P) and cellulose (C) (lg) were pre-wetted in 94ml of medium D (Theodorou et. al., 1994). inoculated with strained rumen fluid (from wether sheep. 10ml) and incubated without agitation for 72h at 39°C.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


Author(s):  
Laura Maccarana ◽  
Mirko Cattani ◽  
Franco Tagliapietra ◽  
Lucia Bailoni ◽  
Stefano Schiavon

Sign in / Sign up

Export Citation Format

Share Document