Stoichiometry of in vitro fermentation of pure substrates with particular emphasis on methane production, using the cumulative gas production technique

1996 ◽  
Vol 1996 ◽  
pp. 24-24
Author(s):  
Angela R. Moss ◽  
Karen C. O'Callaghan

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal. In vitro techniques using rumen fluid as an innoculum can be considered as models of in vivo rumen digestion and have been applied to estimate digestibility of feedstuffs. The in vitro gas production technique (Menke et. al., 1979) can be used successfully to estimate this but there has been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.Three pure substrates, glucose (G), pectin (P) and cellulose (C) (lg) were pre-wetted in 94ml of medium D (Theodorou et. al., 1994). inoculated with strained rumen fluid (from wether sheep. 10ml) and incubated without agitation for 72h at 39°C.

1996 ◽  
Vol 1996 ◽  
pp. 24-24
Author(s):  
Angela R. Moss ◽  
Karen C. O'Callaghan

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal.In vitrotechniques using rumen fluid as an innoculum can be considered as models ofin vivorumen digestion and have been applied to estimate digestibility of feedstuffs. Thein vitrogas production technique (Menkeet. al., 1979) can be used successfully to estimate this but there has been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.Three pure substrates, glucose (G), pectin (P) and cellulose (C) (lg) were pre-wetted in 94ml of medium D (Theodorouet. al., 1994). inoculated with strained rumen fluid (from wether sheep. 10ml) and incubated without agitation for 72h at 39°C.


1997 ◽  
Vol 1997 ◽  
pp. 194-194
Author(s):  
Angela R. Moss ◽  
D. I. Givens

There is a need to be able to measure the methane producing potential of a range of feedstuffs under different rumen conditions in order to predict more accurately the amount of methane produced per animal. In vitro techniques using rumen fluid as an innoculum can be considered as models of in vivo rumen digestion and have been applied to estimate digestibility of feedstuffs. The in vitro gas production technique (Menke et. al, 1979) can be used successfully to estimate this but there have been limited attempts to use it to estimate the methane producing potential of feedstuffs. The objective was to assess the potential of the technique to do this.


1998 ◽  
Vol 1998 ◽  
pp. 30-30 ◽  
Author(s):  
J.G.M. Houdijk ◽  
B.A. Williams ◽  
S. Tamminga ◽  
M.W.A. Verstegen

Dietary fructooligosaccharides (FOS) shifted the proportion of propionate (↑) and acetate (↓) compared to transgalactooligosaccharides (TOS) in weaner pigs' ileal digesta, both in vivo and in vitro (Houdijk et al., 1997). This could be related to different fermentation rates between these so-called non-digestible oligosaccharides (NDOs). These rates were studied via the cumulative gas production technique comparing FOS, TOS, and glucose.


1998 ◽  
Vol 1998 ◽  
pp. 30-30
Author(s):  
J.G.M. Houdijk ◽  
B.A. Williams ◽  
S. Tamminga ◽  
M.W.A. Verstegen

Dietary fructooligosaccharides (FOS) shifted the proportion of propionate (↑) and acetate (↓) compared to transgalactooligosaccharides (TOS) in weaner pigs' ileal digesta, both in vivo and in vitro (Houdijk et al., 1997). This could be related to different fermentation rates between these so-called non-digestible oligosaccharides (NDOs). These rates were studied via the cumulative gas production technique comparing FOS, TOS, and glucose.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 109
Author(s):  
Sukruthai Sommai ◽  
Anusorn Cherdthong ◽  
Chanon Suntara ◽  
Sarong So ◽  
Metha Wanapat ◽  
...  

Two experiments were conducted under this study: Experiment 1 was to study production yield, chemical composition, and in vitro degradability of Brazilian spinach (Alternanthera sissoo; BS) leaf and leaf + leaf-stalk at various maturity ages of 15, 30, 45, and 60 days after plantation and regrowth and Experiment 2 was to evaluate the effect of flavonoid extract from BS leaf and leaf + leaf-stalk and dietary ratios on ruminal gas production, fermentation characteristics, and in vitro degradability. Experiment 1 showed that maturity ages after planting and regrowth increased, the yield significantly increased. Increasing maturity ages significantly (p < 0.05) increased neutral detergent fiber and acid detergent fiber content and decreased crude protein content, total flavonoid (TF) content, and degradability for both leaf and leaf + leaf-stalk. Maturity ages from 15 to 30 days after plantation and regrowth resulted (p < 0.05) the highest TF content and degradability for both leaf and leaf + leaf-stalk. Thus, BS leaf and leaf + leaf-stalk samples from 15 to 30 days of age were used for flavonoid extraction and used in the Experiment 2. Experiment 2 was conducted according to a 3 × 5 factorial experiment. Three roughage to concentrate (R:C) ratios at 50:50, 40:60, and 30:70 were used, and five levels of flavonoid extract (FE) at 0, 10, 20, 30, and 40 mg of substrate dry matter (DM) were supplemented. Experiment 2 showed that R:C ratio and FE had an interaction effect only on acetate to propionate ratio. Varying R:C ratios significantly increased (p < 0.05) in vitro DM degradability, total volatile fatty acids (VFA), and propionate (C3) concentration. FE supplementation linearly (p < 0.05) increased total VFA and C3 concentration and decreased methane production and protozoal population. This study could conclude that FE from BS could effectively modulate ruminal fermentation and decrease methane production. However, in vivo study needs to elucidate in order to validate the present results.


2003 ◽  
Vol 2003 ◽  
pp. 157-157
Author(s):  
A. Bortolozzo ◽  
D. K. Lovett ◽  
S. Lovell ◽  
L. Stack ◽  
F. P. O’Mara

The in vivo determination of methane (CH4) production requires specialist equipment which is costly to maintain. Whilst the in vitro gas production technique has been demonstrated to show potential to rank diets for their methanongenic potential at maintenance planes of nutrition (Moss and Givens, 1997) no study has investigated this relationship when feedstuffs are fed ad libitum. The objective of this study was to assess the ability of the technique to predict in vivo CH4 production and animal performance from six diets differing in their chemical composition.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 182-182
Author(s):  
Marjorie A Killerby ◽  
Diego Zamudio ◽  
Kaycee Ames ◽  
Darren D Henry ◽  
Thomas Schwartz ◽  
...  

Abstract This study evaluated the effects of preservatives on the in vitro fermentation measures of wet brewer’s grain (WBG) silage at different stages of storage. Treatments (TRT) were sodium lignosulfonate at 1% (NaL1) and 2% (NaL2; w/w of fresh WBG), propionic acid (PRP; 0.5% w/w of fresh WBG), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). WBG (Fresh) were packed into 8.8 L mini-silos and stored for 60 d at 21°C (Ensiled), then they were opened and aerobically exposed for 10d (AES). Samples from each stage of storage (STG; Fresh, Ensiled and AES) were analyzed for in vitro ruminal digestibility (24 h).Gas kinetics were recorded using the Ankom RF Gas Production System. Data were analyzed as a randomized complete block design (5 blocks) with a 5 (TRT) × 3 (STG) factorial arrangement. Apparent in vitro DM digestibility (DMD) decreased across STG, (51.5, 47.2 and 40.9 for Fresh, Ensiled and AES, respectively) and increased for NaL1, NaL2 and PRP (~47.8) vs. CON (43.0 ± 2.12%). PRP increased apparent in vitro OM digestibility (OMD) when Ensiled (54.5) and NaL2 increased it for AES (47.1) vs CON (46.3 and 39.9 ± 1.73%, respectively). The asymptotic maximal (M) and rate (k) of gas production decreased across STG (214.6, 181.5, 155.1 and 14.6, 12.6, and 9.8, for Fresh, Ensiled and AES, respectively). PRP increased (200.0) and NaL1 decreased (169.3) M vs. CON (183.9± 7.81ml/incubated DM g), while NaL1 and NaL2 (~11.4) decreased k vs. CON (13.4 ± 0.85%/h). Methane concentration and yield were higher in Fresh vs. other STG (0.94 vs. ~0.84 ± 0.07mM and 0.27 vs. ~0.23 ± 0.03mmol/g fermented OM). Spoilage of WBG decreases fermentability and methane production while PRP and NaL improve digestibility with the former also increasing M and k.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 427-428
Author(s):  
Richard R Lobo ◽  
Marcos I Marcondes ◽  
Paulo H Rodrigues ◽  
Antonio Faciola ◽  
Rafael Pinheiro ◽  
...  

Abstract The objective was to identify the non-linear model with the best fit for cumulative gas production from fermentation of fresh alfalfa, with or without tannin extract, incubated with rumen fluid from five different species of ruminants. Fifteen animals (Taurine and Zebuine cattle, water buffaloes, sheep and goats) were used as inoculum donors. During incubation, 500 mg of fresh alfalfa, with or without 150 mg of acacia tannin extract, were used as substrate in the semi-automated gas production technique. Experimental design was completely randomized in a factorial arrangement with five inoculum sources (ruminant specie) and two treatments (with or without tannin extract). We used the PROC NLMIXED to fit ten mathematical models and the best one was chosen based on the lowest AIC and MSE and highest R2. Lastly, the best model was validated using the cross validation technique. The model with the best fit was the Groot model (AIC 1255.5; MSE 174.01; R2 0.9496) comparatively to others methods and the most part of error is from random effect (97.7%). Tannin inclusion reduced parameters potential gas production (A) and time to produce half of total gas production (T1) (P &gt; 0.0001); however, no difference was observed on the gas production rate (k) (P &gt; 0.1181). When no tannin was added, differences between the two cattle category were observed. Comparing water buffaloes’ inoculum with Taurine inoculum, no differences were observed for “A,” however, this parameter differed among water buffaloes and Zebuine cattle. In conclusion, Groot model had the best fit on in vitro bioassay with alfalfa substrate and treated or not with tannin extract. The tannin extract reduced the potential gas production; however, it did not change the gas production rate. For evaluation of alfalfa by cumulative gas production technique, the potential gas production was changed by using different animal categories as inoculum donor.


2009 ◽  
Vol 2009 ◽  
pp. 190-190
Author(s):  
A Taghizadeh ◽  
M Besharati

Anaerobic digestion of carbohydrates by ruminal microbes produces short chain fatty acids (SCFA), CO2, CH4, and traces of H2; hence, measurement of gas production in vitro can be used to study the rate and extent of digestion of feedstuffs (Hungate, 1966). When a feedstuff is incubated with buffered rumen fluid in vitro, the carbohydrates are fermented to SCFA, gases mainly CO2 and CH4 and microbial cells. Gas production is basically the result of fermentation of carbohydrates to acetate, propionate and butyrate (Wolin, 1960; Beuvink and Spoelstra, 1992; Blummel and Ørskov, 1993). High correlations between gas production and NDF disappearance, r2 = 0.99 (Pell and Schofield, 1993) or gas production and DM disappearance, r2 = 0.95 (Prasad et al., 1994) have been reported. In vitro techniques that estimate digestion kinetics indirectly by measuring gas production are a more viable option than other in vitro methods. Gas production technology allows for a more usable collection of digestion kinetics data and has allowed for a growing body of knowledge that is directly applicable to the feeding programs that are in daily practical field use. The range of data that can be acquired is broad and will no doubt grow over time. One of the most challenging problems associated with using gas production methods is that the amount of gas produced varies with different molar proportions of SCFA. For example, a higher propionate concentration is associated with lower gas production because an extra carbon atom in propionate would otherwise have appeared as CO2 (Wolin, 1960). The object of this study was to evaluate the nutritional quality of noodle waste (NW), tomato pomace (TP) and apple pomace (AP) using the gas production technique.


1998 ◽  
Vol 22 ◽  
pp. 172-174
Author(s):  
D. L. Romney ◽  
F. C. Cadario ◽  
E. Owen ◽  
A .H. Murray

Parameters from in vitro gas production techniques could have potential as predictors of dry-matter intake (DMI) and digestibility. Fermentation is usually carried out under conditions where nitrogen (N) is not limiting. Therefore where N supply is a constraint to intake and digestibility, prediction equations may be inaccurate. This study compared the use of N-free and N-rich media in an in vitro fermentation method (Theodorou et al., 1994) and studied the relationships between in vitro and in vivo parameters obtained using both media.


Sign in / Sign up

Export Citation Format

Share Document