scholarly journals Eucalyptusforest shows low structural resistance and resilience to climate change-type drought

2016 ◽  
Vol 27 (3) ◽  
pp. 493-503 ◽  
Author(s):  
George Matusick ◽  
Katinka X. Ruthrof ◽  
Joseph B. Fontaine ◽  
Giles E. St. J. Hardy
2021 ◽  
Author(s):  
Andre Orcesi ◽  
Emilio Bastidas-Arteaga ◽  
Olga Markogiannaki ◽  
Yue Li ◽  
Franck Schoefs ◽  
...  

<p>One major issue when considering the effects of climate change is to understand, qualify and quantify how natural hazards and the changing climate will likely impact infrastructure assets and services as it strongly depends on current and future climate variability, location, asset design life, function and condition. So far, there is no well-defined and agreed performance indicator that isolates the effects of climate change for structures. Rather, one can mention some key considerations on how climate change may produce changes of vulnerability due to physical and chemical actions affecting structural durability or changes of the exposure in terms of intensity/frequency of extreme events. This paper considers these two aspects and associated challenges, considering some recent activities of members of the IABSE TG6.1.</p>


2007 ◽  
Vol 274 (1625) ◽  
pp. 2531-2537 ◽  
Author(s):  
Steven L Chown ◽  
Sarette Slabber ◽  
Melodie A McGeoch ◽  
Charlene Janion ◽  
Hans Petter Leinaas

Synergies between global change and biological invasion have been identified as a major potential threat to global biodiversity and human welfare. The global change-type drought characteristic of many temperate terrestrial ecosystems is especially significant because it will apparently favour invasive over indigenous species, adding to the burden of conservation and compromising ecosystem service delivery. However, the nature of and mechanisms underlying this synergy remain poorly explored. Here we show that in a temperate terrestrial ecosystem, invasive and indigenous springtail species differ in the form of their phenotypic plasticity such that warmer conditions promote survival of desiccation in the invasive species and reduce it in the indigenous ones. These differences are consistent with significant declines in the densities of indigenous species and little change in those of invasive species in a manipulative field experiment that mimicked climate change trends. We suggest that it is not so much the extent of phenotypic plasticity that distinguishes climate change responses among these invasive and indigenous species, as the form that this plasticity takes. Nonetheless, this differential physiological response provides support for the idea that in temperate terrestrial systems experiencing global change-type drought, invasive species may well be at an advantage relative to their indigenous counterparts.


2011 ◽  
Vol 108 (4) ◽  
pp. 1474-1478 ◽  
Author(s):  
J. Carnicer ◽  
M. Coll ◽  
M. Ninyerola ◽  
X. Pons ◽  
G. Sanchez ◽  
...  

2021 ◽  
Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The assessment of climate change impacts is becoming increasingly relevant for many sciences and engineering disciplines. In this context, climate change may significantly affect the design of new structures and infrastructures as well as the long-term reliability of existing ones designed under the assumption of stationary climate.</p><p>A methodology for the assessment of climate change impact on long-term structural reliability is presented, based on the analysis of available information on past and future climate. The procedure relies on the factor of change approach and provide tools for the adaptation of climatic load maps and the evaluation of variations of failure probability and reliability index with time.</p><p>The proposed procedure will be illustrated for a relevant case study considering changes in climatic actions and different degradation conditions of structural resistance, which may also be affected by global warming.</p>


Ecosystems ◽  
2011 ◽  
Vol 14 (6) ◽  
pp. 949-962 ◽  
Author(s):  
Michael J. Clifford ◽  
Neil S. Cobb ◽  
Michaela Buenemann

2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document