Early Innate Immune Response of Mannose-binding Lectin and Lysozyme in Juvenile Channel Catfish,Ictalurus punctatus

2016 ◽  
Vol 47 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Deepthi Raghu ◽  
Donald D. Ourth ◽  
Brain C. Peterson
2012 ◽  
Vol 92 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Hao Zhang ◽  
Eric Peatman ◽  
Hong Liu ◽  
Donghong Niu ◽  
Tingting Feng ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210640 ◽  
Author(s):  
Laine Monsey ◽  
Lyle G. Best ◽  
Jianhui Zhu ◽  
Susan DeCroo ◽  
Matthew Z. Anderson

2008 ◽  
Vol 60 (4) ◽  
pp. 333-345 ◽  
Author(s):  
Nandor Gabor Than ◽  
Roberto Romero ◽  
Offer Erez ◽  
Juan Pedro Kusanovic ◽  
Adi L. Tarca ◽  
...  

Kidney360 ◽  
2020 ◽  
Vol 1 (6) ◽  
pp. 447-457
Author(s):  
Vijesh J. Bhute ◽  
James Harte ◽  
Jack W. Houghton ◽  
Patrick H. Maxwell

BackgroundMannose-binding lectin (MBL) is an important component of innate immune defense. MBL undergoes oligomerization to generate high mol weight (HMW) forms which act as pattern recognition molecules to detect and opsonize various microorganisms. Several post-translational modifications including prolyl hydroxylation are known to affect the oligomerization of MBL. Yet, the enzyme(s) which hydroxylate proline in the collagen-like domain residues have not been identified and the significance of prolyl hydroxylation is incompletely understood.MethodsTo investigate post-translational modifications of MBL, we stably expressed Myc-DDK tagged MBL in HEK293S cells. We used pharmacologic and genetic inhibition of 2-oxoglutarate–dependent dioxygenases (2OGDD) to identify the enzyme required for prolyl hydroxylation of MBL. We performed mass spectrometry to determine the effects of various inhibitors on MBL modifications.ResultsSecretion of HMW MBL was impaired by inhibitors of the superfamily of 2OGDD, and was dependent on prolyl-4-hydroxylase subunit α1. Roxadustat and vadadustat, but not molidustat, led to significant suppression of hydroxylation and secretion of HMW forms of MBL.ConclusionsThese data suggest that prolyl hydroxylation in the collagen-like domain of MBL is mediated by collagen prolyl-4-hydroxylase. Reduced MBL activity is likely to be an off-target effect of some, but not all, prolyl hydroxylase domain (PHD) inhibitors. There may be advantages in selective PHD inhibitors that would not interfere with MBL production.


2016 ◽  
Vol 90 (11) ◽  
pp. 5256-5269 ◽  
Author(s):  
Anne-Laure Favier ◽  
Evelyne Gout ◽  
Olivier Reynard ◽  
Olivier Ferraris ◽  
Jean-Philippe Kleman ◽  
...  

ABSTRACTEbola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system.IMPORTANCEA specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response.


2004 ◽  
Vol 279 (31) ◽  
pp. 32728-32736 ◽  
Author(s):  
Nades Palaniyar ◽  
Jeya Nadesalingam ◽  
Howard Clark ◽  
Michael J. Shih ◽  
Alister W. Dodds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document