Mannose-binding lectin: the pluripotent molecule of the innate immune system

1996 ◽  
Vol 17 (11) ◽  
pp. 532-539 ◽  
Author(s):  
M Turner
2008 ◽  
Vol 60 (4) ◽  
pp. 333-345 ◽  
Author(s):  
Nandor Gabor Than ◽  
Roberto Romero ◽  
Offer Erez ◽  
Juan Pedro Kusanovic ◽  
Adi L. Tarca ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 787
Author(s):  
Peter A. Idowu ◽  
Adeola P. Idowu ◽  
Oliver T. Zishiri ◽  
Takalani J. Mpofu ◽  
Edwin J. A. Veldhuizen ◽  
...  

In recent years, diseases caused by pathogenic bacteria have profoundly impacted chicken production by causing economic loss in chicken products and by-product revenues. MBL (mannose-binding lectin) is part of the innate immune system (IIS), which is the host’s first line defense against pathogens. The IIS functions centrally by identifying pathogen-specific microorganism-associated molecular patterns (MAMPs) with the help of pattern recognition receptors (PRRs). Studies have classified mannose-binding lectin (MBL) as one of the PRR molecules which belong to the C-type lectin family. The protective role of MBL lies in its ability to activate the complement system via the lectin pathway and there seems to be a direct link between the chicken’s health status and the MBL concentration in the serum. Several methods have been used to detect the presence, the level and the structure of MBL in chickens such as Enzyme-linked immunosorbent assay (ELISA), Polymerase Chain Reaction (PCR) among others. The concentration of MBL in the chicken ranges from 0.4 to 35 µg/mL and can be at peak levels at three to nine days at entry of pathogens. The variations observed are known to depend on the bacterial strains, breed and age of the chicken and possibly the feed manipulation strategies. However, when chicken MBL (cMBL) becomes deficient, it can result in malfunctioning of the innate immune system, which can predispose chickens to diseases. This article aimed to discuss the importance and components of mannose-binding lectin (MBL) in chickens, its mode of actions, and the different methods used to detect MBL. Therefore, more studies are recommended to explore the causes for low and high cMBL production in chicken breeds and the possible effect of feed manipulation strategies in enhancing cMBL production.


2007 ◽  
Vol 197 (6) ◽  
pp. S139
Author(s):  
Gabor Than ◽  
Roberto Romero ◽  
Offer Erez ◽  
Juan Pedro Kusanovic ◽  
Adi L. Tarca ◽  
...  

2016 ◽  
Vol 311 (2) ◽  
pp. L280-L291 ◽  
Author(s):  
Jonathan M. Ciencewicki ◽  
Kirsten C. Verhein ◽  
Kevin Gerrish ◽  
Zachary R. McCaw ◽  
Jianying Li ◽  
...  

Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type ( Mbl+/+) and MBL-deficient ( Mbl−/−) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [ Cxcl2 (major intrinsic protein 2)] and 5 [ Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl−/− than Mbl+/+ mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl+/+ and Mbl−/− mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS2 data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model.


Kidney360 ◽  
2020 ◽  
Vol 1 (6) ◽  
pp. 447-457
Author(s):  
Vijesh J. Bhute ◽  
James Harte ◽  
Jack W. Houghton ◽  
Patrick H. Maxwell

BackgroundMannose-binding lectin (MBL) is an important component of innate immune defense. MBL undergoes oligomerization to generate high mol weight (HMW) forms which act as pattern recognition molecules to detect and opsonize various microorganisms. Several post-translational modifications including prolyl hydroxylation are known to affect the oligomerization of MBL. Yet, the enzyme(s) which hydroxylate proline in the collagen-like domain residues have not been identified and the significance of prolyl hydroxylation is incompletely understood.MethodsTo investigate post-translational modifications of MBL, we stably expressed Myc-DDK tagged MBL in HEK293S cells. We used pharmacologic and genetic inhibition of 2-oxoglutarate–dependent dioxygenases (2OGDD) to identify the enzyme required for prolyl hydroxylation of MBL. We performed mass spectrometry to determine the effects of various inhibitors on MBL modifications.ResultsSecretion of HMW MBL was impaired by inhibitors of the superfamily of 2OGDD, and was dependent on prolyl-4-hydroxylase subunit α1. Roxadustat and vadadustat, but not molidustat, led to significant suppression of hydroxylation and secretion of HMW forms of MBL.ConclusionsThese data suggest that prolyl hydroxylation in the collagen-like domain of MBL is mediated by collagen prolyl-4-hydroxylase. Reduced MBL activity is likely to be an off-target effect of some, but not all, prolyl hydroxylase domain (PHD) inhibitors. There may be advantages in selective PHD inhibitors that would not interfere with MBL production.


2016 ◽  
Vol 90 (11) ◽  
pp. 5256-5269 ◽  
Author(s):  
Anne-Laure Favier ◽  
Evelyne Gout ◽  
Olivier Reynard ◽  
Olivier Ferraris ◽  
Jean-Philippe Kleman ◽  
...  

ABSTRACTEbola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system.IMPORTANCEA specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response.


2004 ◽  
Vol 279 (31) ◽  
pp. 32728-32736 ◽  
Author(s):  
Nades Palaniyar ◽  
Jeya Nadesalingam ◽  
Howard Clark ◽  
Michael J. Shih ◽  
Alister W. Dodds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document