Combining co‐culturing of Paenibacillus strains and Vitreoscilla hemoglobin expression as a strategy to improve biodesulfurization

Author(s):  
T. Sar ◽  
Y. Chen ◽  
Y. Bai ◽  
B. Liu ◽  
P. Agarwal ◽  
...  
2010 ◽  
Vol 110 (6) ◽  
pp. 633-637 ◽  
Author(s):  
Chartchalerm Isarankura-Na-Ayudhya ◽  
Sakda Yainoy ◽  
Tanawut Tantimongcolwat ◽  
Leif Bülow ◽  
Virapong Prachayasittikul

2002 ◽  
Vol 18 (3) ◽  
pp. 652-656 ◽  
Author(s):  
V. Roos ◽  
C.I.J. Andersson ◽  
C. Arfvidsson ◽  
K.-G. Wahlund ◽  
L. Bulow

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jianrong Wang ◽  
Yangyuan Li ◽  
Danni Liu

A series of strategies were applied to improve expression level of recombinant endo-β-1,4-xylanase fromAspergillus usamii(A. usamii) inPichia pastoris(P. pastoris). Firstly, the endo-β-1,4-xylanase (xynB) gene fromA. usamiiwas optimized forP. pastorisand expressed inP. pastoris. The maximum xylanase activity of optimized (xynB-opt) gene was 33500 U/mL after methanol induction for 144 h in 50 L bioreactor, which was 59% higher than that by wild-type (xynB) gene. To further increase the expression ofxynB-opt, theVitreoscilla hemoglobin(VHb) gene was transformed to the recombinant strain containingxynB-opt. The results showed that recombinant strain harboring thexynB-optandVHb(named X33/xynB-opt-VHb) displayed higher biomass, cell viability, and xylanase activity. The maximum xylanase activity of X33/xynB-opt-VHbin 50 L bioreactor was 45225 U/mL, which was 35% and 115% higher than that by optimized (xynB-opt) gene and wild-type (xynB) gene. Finally, the induction temperature of X33/xynB-opt-VHbwas optimized in 50 L bioreactor. The maximum xylanase activity of X33/xynB-opt-VHbreached 58792 U/mL when the induction temperature was 22°C. The results presented here will greatly contribute to improving the production of recombinant proteins inP. pastoris.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 561 ◽  
Author(s):  
Kei-Anne Baritugo ◽  
Hee Taek Kim ◽  
Mi Na Rhie ◽  
Seo Young Jo ◽  
Tae Uk Khang ◽  
...  

Corynebacterium glutamicum is an industrial strain used for the production of valuable chemicals such as L-lysine and L-glutamate. Although C. glutamicum has various industrial applications, a limited number of tunable systems are available to engineer it for efficient production of platform chemicals. Therefore, in this study, we developed a novel tunable promoter system based on repeats of the Vitreoscilla hemoglobin promoter (Pvgb). Tunable expression of green fluorescent protein (GFP) was investigated under one, four, and eight repeats of Pvgb (Pvgb, Pvgb4, and Pvgb8). The intensity of fluorescence in recombinant C. glutamicum strains increased as the number of Pvgb increased from single to eight (Pvgb8) repeats. Furthermore, we demonstrated the application of the new Pvgb promoter-based vector system as a platform for metabolic engineering of C. glutamicum by investigating 5-aminovaleric acid (5-AVA) and gamma-aminobutyric acid (GABA) production in several C. glutamicum strains. The profile of 5-AVA and GABA production by the recombinant strains were evaluated to investigate the tunable expression of key enzymes such as DavBA and GadBmut. We observed that 5-AVA and GABA production by the recombinant strains increased as the number of Pvgb used for the expression of key proteins increased. The recombinant C. glutamicum strain expressing DavBA could produce higher amounts of 5-AVA under the control of Pvgb8 (3.69 ± 0.07 g/L) than the one under the control of Pvgb (3.43 ± 0.10 g/L). The average gamma-aminobutyric acid production also increased in all the tested strains as the number of Pvgb used for GadBmut expression increased from single (4.81–5.31 g/L) to eight repeats (4.94–5.58 g/L).


Author(s):  
Yaneenart Suwanwong ◽  
Malin Kvist ◽  
Chartchalerm Isarankura-Na-Ayudhya ◽  
Natta Tansila ◽  
Leif Bulow ◽  
...  

2007 ◽  
Vol 25 (2) ◽  
pp. 123-136 ◽  
Author(s):  
Lei Zhang ◽  
Yingjun Li ◽  
Zinan Wang ◽  
Yang Xia ◽  
Wansheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document