scholarly journals HIGH-ORDER SHORT-TIME EXPANSIONS FOR ATM OPTION PRICES OF EXPONENTIAL LÉVY MODELS

2014 ◽  
Vol 26 (3) ◽  
pp. 516-557 ◽  
Author(s):  
José E. Figueroa-López ◽  
Ruoting Gong ◽  
Christian Houdré
2015 ◽  
Vol 18 (04) ◽  
pp. 1550025
Author(s):  
ERIK EKSTRÖM ◽  
BING LU

We show that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential Lévy models is the existence of jumps towards the strike price in the underlying process. When such jumps do not exist, the implied volatility converges to the volatility of the Gaussian component of the underlying Lévy process as the time to maturity tends to zero. These results are proved by comparing the short-time asymptotics of the Black–Scholes price with explicit formulas for upper and lower bounds of option prices in exponential Lévy models.


Author(s):  
Marc Lagunas-Merino ◽  
Raúl Merino ◽  
Josep Vives ◽  
Archil Gulisashvili

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1878
Author(s):  
Siow Woon Jeng ◽  
Adem Kilicman

Rough Heston model possesses some stylized facts that can be used to describe the stock market, i.e., markets are highly endogenous, no statistical arbitrage mechanism, liquidity asymmetry for buy and sell order, and the presence of metaorders. This paper presents an efficient alternative to compute option prices under the rough Heston model. Through the decomposition formula of the option price under the rough Heston model, we manage to obtain an approximation formula for option prices that is simpler to compute and requires less computational effort than the Fourier inversion method. In addition, we establish finite error bounds of approximation formula of option prices under the rough Heston model for 0.1≤H<0.5 under a simple assumption. Then, the second part of the work focuses on the short-time implied volatility behavior where we use a second-order approximation on the implied volatility to match the terms of Taylor expansion of call option prices. One of the key results that we manage to obtain is that the second-order approximation for implied volatility (derived by matching coefficients of the Taylor expansion) possesses explosive behavior for the short-time term structure of at-the-money implied volatility skew, which is also present in the short-time option prices under rough Heston dynamics. Numerical experiments were conducted to verify the effectiveness of the approximation formula of option prices and the formulas for the short-time term structure of at-the-money implied volatility skew.


2017 ◽  
Vol 24 (6) ◽  
pp. 547-574 ◽  
Author(s):  
José E. Figueroa-López ◽  
Ruoting Gong ◽  
Christian Houdré
Keyword(s):  

2005 ◽  
Vol 19 (4) ◽  
pp. 489-505 ◽  
Author(s):  
Qiming Chen ◽  
James D. McCalley

We propose the use of the cluster distribution, derived from a negative binomial probability model, to estimate the probability of high-order events in terms of number of lines outaged within a short time, useful in long-term planning and also in short-term operational defense to such events. We use this model to fit statistical data gathered for a 30-year period for North America. The model is compared to the commonly used Poisson model and the power-law model. Results indicate that the Poisson model underestimates the probability of higher-order events, whereas the power-law model overestimates it. We use the strict chi-square fitness test to compare the fitness of these three models and find that the cluster model is superior to the other two models for the data used in the study.


2015 ◽  
Vol 18 (05) ◽  
pp. 1550031 ◽  
Author(s):  
ANDREY ITKIN

This paper is dedicated to the construction of high order (in both space and time) finite-difference schemes for both forward and backward PDEs and PIDEs, such that option prices obtained by solving both the forward and backward equations are consistent. This approach is partly inspired by Andreassen & Huge (2011) who reported a pair of consistent finite-difference schemes of first-order approximation in time for an uncorrelated local stochastic volatility (LSV) model. We extend their approach by constructing schemes that are second-order in both space and time and that apply to models with jumps and discrete dividends. Taking correlation into account in our approach is also not an issue.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Luogen Yao ◽  
Gang Yang

A new class of distortion operators based on quantile function is proposed for pricing options. It is shown that option prices obtained with our distortion operators are just the prices under mean correcting martingale measure in exponential Lévy models. In particular, Black-Scholes formula can be recuperated by our distortion operator. Simulation analysis shows that our distortion operator is superior to normal distortion operator and NIG distortion operator.


2012 ◽  
Vol 239-240 ◽  
pp. 807-810
Author(s):  
Jian Jun Li ◽  
Jian Feng Zhao

Life parameters signal has characteristics of extremely low frequency, low signal-to-noise ratio, and the easy submerged in strong clutter noises. The method for detecting life signal based on filter bank and high order statistics is presented, in which neither the Gaussian supposition of the observed signal, nor a prior information about the waveform and arrival time of the observed signal is necessary. The principle of method is to separate the spectrum of input signal into many narrow frequency bands, whose Sub-band signal is followed by a short-time estimation of higher-order statistics so as to suppress Gaussian noises. Simulated results show that the method not only can completely descript life signals in the time-frequency domain, but improve the signal-to-noise ratio and the ability of detecting algorithm. Moreover, the method is effective and practical.


Author(s):  
Lukas Gonon ◽  
Christoph Schwab

AbstractWe study the expression rates of deep neural networks (DNNs for short) for option prices written on baskets of $d$ d risky assets whose log-returns are modelled by a multivariate Lévy process with general correlation structure of jumps. We establish sufficient conditions on the characteristic triplet of the Lévy process $X$ X that ensure $\varepsilon $ ε error of DNN expressed option prices with DNNs of size that grows polynomially with respect to ${\mathcal{O}}(\varepsilon ^{-1})$ O ( ε − 1 ) , and with constants implied in ${\mathcal{O}}(\, \cdot \, )$ O ( ⋅ ) which grow polynomially in $d$ d , thereby overcoming the curse of dimensionality (CoD) and justifying the use of DNNs in financial modelling of large baskets in markets with jumps.In addition, we exploit parabolic smoothing of Kolmogorov partial integro-differential equations for certain multivariate Lévy processes to present alternative architectures of ReLU (“rectified linear unit”) DNNs that provide $\varepsilon $ ε expression error in DNN size ${\mathcal{O}}(|\log (\varepsilon )|^{a})$ O ( | log ( ε ) | a ) with exponent $a$ a proportional to $d$ d , but with constants implied in ${\mathcal{O}}(\, \cdot \, )$ O ( ⋅ ) growing exponentially with respect to $d$ d . Under stronger, dimension-uniform non-degeneracy conditions on the Lévy symbol, we obtain algebraic expression rates of option prices in exponential Lévy models which are free from the curse of dimensionality. In this case, the ReLU DNN expression rates of prices depend on certain sparsity conditions on the characteristic Lévy triplet. We indicate several consequences and possible extensions of the presented results.


Sign in / Sign up

Export Citation Format

Share Document