scholarly journals Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems

2016 ◽  
Vol 213 (3) ◽  
pp. 1452-1465 ◽  
Author(s):  
Preetisri Baskaran ◽  
Riitta Hyvönen ◽  
S. Linnea Berglund ◽  
Karina E. Clemmensen ◽  
Göran I. Ågren ◽  
...  
2021 ◽  
Author(s):  
Mbezele Junior Yannick NGABA ◽  
Yves Uwiragiye ◽  
Roland Bol ◽  
Wim de Vries ◽  
Jianbin Zhou

2022 ◽  
Vol 14 (2) ◽  
pp. 914
Author(s):  
Heba Elbasiouny ◽  
Hassan El-Ramady ◽  
Fathy Elbehiry ◽  
Vishnu D. Rajput ◽  
Tatiana Minkina ◽  
...  

The climate is one of the key elements impacting several cycles connected to soil and plant systems, as well as plant production, soil quality, and environmental quality. Due to heightened human activity, the rate of CO2 is rising in the atmosphere. Changing climatic conditions (such as temperature, CO2, and precipitation) influence plant nutrition in a range of ways, comprising mineralization, decomposition, leaching, and losing nutrients in the soil. Soil carbon sequestration plays an essential function—not only in climate change mitigation but also in plant nutrient accessibility and soil fertility. As a result, there is a significant interest globally in soil carbon capture from atmospheric CO2 and sequestration in the soil via plants. Adopting effective management methods and increasing soil carbon inputs over outputs will consequently play a crucial role in soil carbon sequestration (SCseq) and plant nutrition. As a result, boosting agricultural yield is necessary for food security, notoriously in developing countries. Several unanswered problems remain regarding climate change and its impacts on plant nutrition and global food output, which will be elucidated over time. This review provides several remarkable pieces of information about the influence of changing climatic variables on plant nutrients (availability and uptake). Additionally, it addresses the effect of soil carbon sequestration, as one of climate change mitigations, on plant nutrition and how relevant management practices can positively influence this.


CATENA ◽  
2019 ◽  
Vol 181 ◽  
pp. 104098 ◽  
Author(s):  
Xiang Gu ◽  
Xi Fang ◽  
Wenhua Xiang ◽  
Yelin Zeng ◽  
Shiji Zhang ◽  
...  

2016 ◽  
Vol 368 ◽  
pp. 28-38 ◽  
Author(s):  
Jorge Hernández ◽  
Amabelia del Pino ◽  
Eric D. Vance ◽  
Álvaro Califra ◽  
Fabián Del Giorgio ◽  
...  

2018 ◽  
Author(s):  
Talal Darwish ◽  
Therese Atallah ◽  
Ali Fadel

Abstract. North East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the situation of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1 : 5 Million) in topsoils (0–30 cm) and subsoils (30–100 cm). The maps showed that 69 % of soil resources present a stock of SOC below the threshold of 30 t ha−1. The stocks varied between ≈ 10 t ha−1 in shrublands and 60 t ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of SIC were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 t ha−1, against 20 to 45 t ha−1 for SOC. This paper also highlights the modest contribution of NENA region to global SOC stock in the topsoil not exceeding 4.1 %. The paper also discusses agricultural practices that are favorable to carbon sequestration. Practices of conservation agriculture could be effective, as the presence of soil cover reduces the evaporation, water and wind erosions. Further, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal, caused a notable increase of SOC after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist especially in aspects related to the effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.


Sign in / Sign up

Export Citation Format

Share Document