scholarly journals Interactions of saprotrophic fungi with tree roots: can we observe the emergence of novel ectomycorrhizal fungi?

2017 ◽  
Vol 215 (2) ◽  
pp. 511-513 ◽  
Author(s):  
Petr Baldrian ◽  
Petr Kohout
Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 427 ◽  
Author(s):  
Tod Ramsfield ◽  
Philip-Edouard Shay ◽  
Tony Trofymow ◽  
Colin Myrholm ◽  
Bradley Tomm ◽  
...  

Soil fungi are important components of boreal forest ecosystems; for example, saprotrophic fungi regulate nutrient cycling, and mycorrhizal species facilitate nutrient uptake by plants. This study aimed to assess soil fungal communities in a reclaimed area and an adjacent natural mixedwood forest and to identify the distribution of taxa available for seedling colonization. Soil fungal microbiomes were assessed along three transects (from 10 m inside the interior of the undisturbed forest to 40 m inside the reclaimed area) and in the roots of small aspen within the natural forest. Using high-throughput deoxyribonucleic acid (DNA) sequencing of internal transcribed spacer amplicons, a total of 2796 unique fungal taxa were detected across fine roots, forest floor, and mineral soils collected along the transects, whereas 166 taxa were detected in the aspen roots from the natural forest. Within the interior of the forest, ectomycorrhizal fungi were more common, whereas in the reclaimed areas, arbuscular mycorrhizae and saprophytes were more common. This survey showed that natural areas of adjacent undisturbed forest can act as a source of ectomycorrhizal fungi for dispersal into reclaimed areas. Notably, soil fungal taxa colonizing the root systems of small aspen included species that are specifically associated with soils from the undisturbed forest (primarily ectomycorrhizae) or the reclaimed clearing (saprotrophs and plant pathogens).


2015 ◽  
Vol 17 ◽  
pp. 205-212 ◽  
Author(s):  
Claus Bässler ◽  
Jacob Heilmann-Clausen ◽  
Peter Karasch ◽  
Roland Brandl ◽  
Hans Halbwachs

Author(s):  
S. Clausing ◽  
L. E. Likulunga ◽  
D. Janz ◽  
H. Y. Feng ◽  
D. Schneider ◽  
...  

AbstractN and P are essential macronutrients for all organisms. How shifts in the availability of N or P affect fungal communities in temperate forests is not well understood. Here, we conducted a factorial P × N fertilization experiment to disentangle the effects of nutrient availability on soil-residing, root-associated, and ectomycorrhizal fungi in beech (Fagus sylvatica) forests differing in P availability. We tested the hypotheses that in P-poor forests, P fertilization leads to enhanced fungal diversity in soil and roots, resulting in enhanced P nutrition of beech, and that N fertilization aggravates P shortages, shifting the fungal communities toward nitrophilic species. In response to fertilizer treatments (1 × 50 kg ha−1 P and 5 × 30 kg ha−1 N within 2 years), the labile P fractions increased in soil and roots, regardless of plant-available P in soil. Root total P decreased in response to N fertilization and root total P increased in response to P addition at the low P site. Ectomycorrhizal species richness was unaffected by fertilizer treatments, but the relative abundances of ectomycorrhizal fungi increased in response to P or N addition. At the taxon level, fungal assemblages were unaffected by fertilizer treatments, but at the order level, different response patterns for saprotrophic fungi among soil and ectomycorrhizal fungi on roots were found. Boletales increased in response to P, and Russulales decreased under N + P addition. Our results suggest that trait conservatism in related species afforded resistance of the resident mycobiome composition to nutritional imbalances.


1995 ◽  
Vol 73 (6) ◽  
pp. 807-816 ◽  
Author(s):  
Sigurd M. Såstad

The macrofungal Basidiomycete community of a Pinus sylvestris forest was investigated in 50 plots, 2 × 2 m, to see how vegetation composition and space influenced the distribution of saprotrophic and ectomycorrhizal fungi. Mantel tests and partial Mantel tests revealed a relationship between total cover of the field layer and mycorrhizal fungi, and total cover of the bottom layer and saprotrophic fungi. These results are consistent with the predictions that mycorrhizal fungi are mainly influenced by plant species present in the root zone, whereas saprotrophic fungi are mainly influenced by the plant species of the bottom layer. Variation in the abundance of tree species did not influence the distribution of macrofungal species at this scale. The spatial patterns of fungal distribution found in this study did not deviate significantly from a random distribution. Indirect ordination showed that the ectomycorrhizal fungi mainly responded to a gradient in cover of the field layer, whereas the saprotrophs seemed to respond to a complex gradient of cover of field and bottom layer, moisture, and paludification. A direct ordination using both vegetation and fungi descriptors indicated that some of the covariation in the saprotrophic fungi and the bottom layer might be coordinated responses to changes in the field layer. A considerably higher β diversity was found among the fungi than in the vegetation. Key words: basidiomycetes, saprotrophic fungi, mycorrhizal fungi, fungi–vegetation relationships, Mantel test, ordination.


2007 ◽  
Vol 85 (4) ◽  
pp. 385-393 ◽  
Author(s):  
Andrew W. Wilson ◽  
Erik A. Hobbie ◽  
David S. Hibbett

Calostoma cinnabarinum Corda belongs to the suborder Sclerodermatineae (Boletales), which includes many well-known ectomycorrhizal basidiomycetes, but the genus Calostoma has been described as saprotrophic. This study combines isotopic, molecular, and morphological techniques to determine the mode of nutrition of C. cinnabarinum. δ13C and δ15N measurements were compared among co-occurring C. cinnabarinum, ectomycorrhizal fungi, saprotrophic fungi, and ectomycorrhizal plants. Isotopic profiles of C. cinnabarinum resembled those of ectomycorrhizal fungi but not those of saprotrophic fungi. For molecular analyses, ectomycorrhizal root tips were extracted from soil cores collected beneath C. cinnabarinum fruit bodies. Nuclear ribosomal internal transcribed spacer (nrITS) sequences were obtained from ectomycorrhizal root tips using fungal-specific primers and screened against C. cinnabarinum nrITS sequences. Ectomycorrhizal root tips had nrITS sequences that matched C. cinnabarinum fruiting bodies. Root tips colonized by C. cinnabarinum were also described morphologically. Several morphological characters were shared between fruiting bodies and ectomycorrhizal root tips of C. cinnabarinum. Results of isotopic, molecular, and morphological analyses indicate that C. cinnabarinum is ectomycorrhizal. Molecular analysis and observations of plant associations suggest that C. cinnabarinum forms ectomycorrhizae with Quercus .


2020 ◽  
Author(s):  
S. Clausing ◽  
L.E. Likulunga ◽  
D. Janz ◽  
H.Y. Feng ◽  
D. Schneider ◽  
...  

AbstractIn forest soils, the pools of N and P available for microbes and plants are strongly dependent on soil properties. Here, we conducted a P and N fertilization experiment to disentangle the effects of nutrient availability on soil-residing, root-associated and ectomycorrhizal fungi in beech (Fagus sylvativa) forests differing in P availability. We tested the hypothesis that in P-poor forests, P fertilization leads to enhanced fungal diversity in soil and roots, resulting in enhanced P nutrition of beech and that N fertilization aggravates P shortage, shifting the fungal communities towards nitrophilic species. In response to fertilizer treatments (1x 50 kg ha−1 P, 5x 30 kg ha−1 N within 2 years), the labile P fractions increased in soil and roots, regardless of plant-available P in soil. Root total P decreased in response to N fertilization and root total P increased at the low P site in response to P addition. The relative abundances of ectomycorrhizal fungi, but not their species richness, increased in response to P or N addition in comparison with that of saprotrophic fungi. While some fungal orders (Trechisporales, Atheliales, Cantharellales) were moderately decreased in response to fertilizer treatments, Boletales increased in response to P and Russulaes to N addition. N or P fertilization resulted in functional trade-off, shifting away from saprotrophic towards symbiotrophic potential. Our results suggest that chronic exposure of forest ecosystems to increased nutrient inputs may overcome the resistance of the resident mycobiome structures resulting in nutritional imbalance and loss of forest ecosystem services.


1979 ◽  
Vol 57 (11) ◽  
pp. 1203-1205 ◽  
Author(s):  
Iwan Ho ◽  
Bratislav Zak

Six ectomycorrhizal fungi commonly associated with Douglas-fir were tested in vitro for acid phosphatase activity by measuring the amount of p-nitrophenyl phosphate converted to p-nitrophenol and by examining their production of isoenzymes detectable by starch gel electrophoresis. Both test methods showed acid phosphatase activity to be highest in Hebeloma crustuliniforme, followed by progressively lower activity in Laccaria laccata, Amanita muscaria, and Thelephora terrestris. Rhizopogon vinicolor and Piloderma bicolor showed low activity. We discuss the significance of these fungi in the utilization of complex phosphates by tree roots.


2004 ◽  
Vol 82 (6) ◽  
pp. 781-800 ◽  
Author(s):  
Steven A Trudell ◽  
Robert L Edmonds

We characterized the epigeous macrofungus communities in two old-growth conifer forests by collecting sporocarps. Despite the similarity in dominant tree species in the two forests, the macrofungus communities were very different. At the drier, nitrogen-poor Deer Park area, the macrofungi were dominated by ectomycorrhizal species in the genera Cortinarius, Tricholoma, Hydnellum, Suillus, and Sarcodon. At the wetter, higher nitrogen Hoh Valley, the macrofungi were characterized by ectomycorrhizal species in different genera, such as Inocybe, Russula, Amanita, Boletus, and Phaeocollybia, and saprotrophic fungi accounted for a greater proportion of the community. Species richness was similar at the two areas, but sporocarp production was much higher at Deer Park. We propose that (i) these community differences developed over a long time; (ii) they are largely related to differences in ecosystem moisture and nitrogen abundance; and (iii) within the ectomycorrhizal fungi, possible causal mechanisms involve mycelial morphology and carbon allocation within the symbioses. The apparent response to relatively small but presumably long-term differences in nitrogen abundance suggests that sporocarp production by macrofungi could be an effective bioindicator and should be considered in determination of critical loads for atmospheric nitrogen deposition to temperate and boreal forests.Key words: critical nitrogen loads, ectomycorrhizal fungi, macrofungi, macrofungus communities, nitrogen, old-growth conifer forests.


2008 ◽  
Vol 38 (5) ◽  
pp. 1053-1060 ◽  
Author(s):  
Stacie A. Kageyama ◽  
Nancy Ritchie Posavatz ◽  
Kirk E. Waterstripe ◽  
Sarah J. Jones ◽  
Peter J. Bottomley ◽  
...  

Meadows are natural dynamic features of forested mountain landscapes of the Pacific Northwest. Proportions of meadows and forests change with environmental conditions and disturbance history. We investigated the belowground microbial communities associated with these two vegetation types and how they change across the meadow–forest transition at two sites in Oregon. Soils were sampled along replicate transects extending from meadow into forest. We quantified total bacterial and fungal biomass using direct microscopy and described the composition of bacterial and fungal communities using a DNA-based fingerprinting technique. Bacterial biomass was similar in meadow and forest soils, but fungal biomass was significantly higher in forest soil. Meadow and forest soils had distinct communities of bacteria and fungi. Bacterial communities near the meadow–forest boundary reflected current vegetation, but fungal communities under meadow vegetation near the forest edge were intermediate in composition between those found in meadow and forest soils. The more gradual transition observed with fungal communities may reflect the influence of tree roots and their associated ectomycorrhizal fungi or possibly colonization by saprotrophic fungi associated with tree litter accumulating near the forest edge. Invasion of forest-associated fungi into the meadow soils may presage subsequent expansion of forest vegetation into meadows.


Sign in / Sign up

Export Citation Format

Share Document