scholarly journals Impact of nitrogen and phosphorus addition on resident soil and root mycobiomes in beech forests

Author(s):  
S. Clausing ◽  
L. E. Likulunga ◽  
D. Janz ◽  
H. Y. Feng ◽  
D. Schneider ◽  
...  

AbstractN and P are essential macronutrients for all organisms. How shifts in the availability of N or P affect fungal communities in temperate forests is not well understood. Here, we conducted a factorial P × N fertilization experiment to disentangle the effects of nutrient availability on soil-residing, root-associated, and ectomycorrhizal fungi in beech (Fagus sylvatica) forests differing in P availability. We tested the hypotheses that in P-poor forests, P fertilization leads to enhanced fungal diversity in soil and roots, resulting in enhanced P nutrition of beech, and that N fertilization aggravates P shortages, shifting the fungal communities toward nitrophilic species. In response to fertilizer treatments (1 × 50 kg ha−1 P and 5 × 30 kg ha−1 N within 2 years), the labile P fractions increased in soil and roots, regardless of plant-available P in soil. Root total P decreased in response to N fertilization and root total P increased in response to P addition at the low P site. Ectomycorrhizal species richness was unaffected by fertilizer treatments, but the relative abundances of ectomycorrhizal fungi increased in response to P or N addition. At the taxon level, fungal assemblages were unaffected by fertilizer treatments, but at the order level, different response patterns for saprotrophic fungi among soil and ectomycorrhizal fungi on roots were found. Boletales increased in response to P, and Russulales decreased under N + P addition. Our results suggest that trait conservatism in related species afforded resistance of the resident mycobiome composition to nutritional imbalances.

2020 ◽  
Author(s):  
S. Clausing ◽  
L.E. Likulunga ◽  
D. Janz ◽  
H.Y. Feng ◽  
D. Schneider ◽  
...  

AbstractIn forest soils, the pools of N and P available for microbes and plants are strongly dependent on soil properties. Here, we conducted a P and N fertilization experiment to disentangle the effects of nutrient availability on soil-residing, root-associated and ectomycorrhizal fungi in beech (Fagus sylvativa) forests differing in P availability. We tested the hypothesis that in P-poor forests, P fertilization leads to enhanced fungal diversity in soil and roots, resulting in enhanced P nutrition of beech and that N fertilization aggravates P shortage, shifting the fungal communities towards nitrophilic species. In response to fertilizer treatments (1x 50 kg ha−1 P, 5x 30 kg ha−1 N within 2 years), the labile P fractions increased in soil and roots, regardless of plant-available P in soil. Root total P decreased in response to N fertilization and root total P increased at the low P site in response to P addition. The relative abundances of ectomycorrhizal fungi, but not their species richness, increased in response to P or N addition in comparison with that of saprotrophic fungi. While some fungal orders (Trechisporales, Atheliales, Cantharellales) were moderately decreased in response to fertilizer treatments, Boletales increased in response to P and Russulaes to N addition. N or P fertilization resulted in functional trade-off, shifting away from saprotrophic towards symbiotrophic potential. Our results suggest that chronic exposure of forest ecosystems to increased nutrient inputs may overcome the resistance of the resident mycobiome structures resulting in nutritional imbalance and loss of forest ecosystem services.


Author(s):  
Lei Su ◽  
Mengzhou Liu ◽  
Chengming You ◽  
Qun Guo ◽  
Zhongmin Hu ◽  
...  

Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but how investigations of such responses to multiple levels of nutrient enrichment remains unclear. In this study, we manipulated nitrogen (N) and phosphorus (P) availability to examine seed production responses to three levels each of N and P addition in a factorial experiment: no N addition (0 g N m-2 yr-1), low N addition (10 g N m-2 yr-1), high N addition (40 g N m-2 yr-1), and no P addition (0 g P m-2 yr-1), low P addition (5 g P m-2 yr-1), high P addition (10 g P m-2 yr-1). Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but it did enhance it under N addition. Furthermore, N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is limited not by P but rather by N in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics of steppe ecosystems under intensified nutrient enrichment and can inform their improved management in the future.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 427 ◽  
Author(s):  
Tod Ramsfield ◽  
Philip-Edouard Shay ◽  
Tony Trofymow ◽  
Colin Myrholm ◽  
Bradley Tomm ◽  
...  

Soil fungi are important components of boreal forest ecosystems; for example, saprotrophic fungi regulate nutrient cycling, and mycorrhizal species facilitate nutrient uptake by plants. This study aimed to assess soil fungal communities in a reclaimed area and an adjacent natural mixedwood forest and to identify the distribution of taxa available for seedling colonization. Soil fungal microbiomes were assessed along three transects (from 10 m inside the interior of the undisturbed forest to 40 m inside the reclaimed area) and in the roots of small aspen within the natural forest. Using high-throughput deoxyribonucleic acid (DNA) sequencing of internal transcribed spacer amplicons, a total of 2796 unique fungal taxa were detected across fine roots, forest floor, and mineral soils collected along the transects, whereas 166 taxa were detected in the aspen roots from the natural forest. Within the interior of the forest, ectomycorrhizal fungi were more common, whereas in the reclaimed areas, arbuscular mycorrhizae and saprophytes were more common. This survey showed that natural areas of adjacent undisturbed forest can act as a source of ectomycorrhizal fungi for dispersal into reclaimed areas. Notably, soil fungal taxa colonizing the root systems of small aspen included species that are specifically associated with soils from the undisturbed forest (primarily ectomycorrhizae) or the reclaimed clearing (saprotrophs and plant pathogens).


2000 ◽  
Vol 41 (9) ◽  
pp. 241-249
Author(s):  
L. Prendl ◽  
B. Nikolavcic

In industrial wastewater, especially from food industry, the concentrations of the organic compounds are usually high, whereas the contents of nitrogen and phosphorus are often low. For the aerobic treatment, the addition of nutrients to the industrial wastewater can be required. For ecological and economic reasons, this nutrient addition must be kept to a minimum. Unintentional nitrification and denitrification lead to an additional demand of nitrogen and should therefore be avoided at such plants. Observations from two treatment plants (50 000 m3/d, 40 t COD/d) proved that the nitrogen dosage can be controlled by monitoring the ammonia concentration. If the control procedure also considers the N/COD ratio in the raw wastewater (including the N dosage) and the organic sludge load of the last couple of days, very low effluent concentrations (NH4–N in the range of 0.3–0.5 mg/l) can be achieved and the nitrogen dosage is low. If there are periods with nitrogen in excess, too, a minimum nitrification capacity has to be maintained by means of nitrogen addition in periods of deficiency. A control procedure for phosphorus addition is to keep a fixed P/COD-ratio in the raw wastewater (including P dosage). The PO4–P concentration is monitored in order to limit the maximum phosphorus dosage. Following this procedure, considerable savings of phosphorus have been achieved, keeping very low effluent concentrations (average Total-P<0.3 mg/l).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lei Li ◽  
Bo Liu ◽  
Xiaopeng Gao ◽  
Xiangyi Li ◽  
Chengdao Li

AbstractPlant C:N:P stoichiometric relations drive powerful constraints on ecological interactions and processes. However, information about plant stoichiometric responses to N and P availability in desert grassland is limited. We conducted two field experiments with 7 levels of N (from 0.5 g to 24 g N ∙ m−2 yr−1) and P (from 0.05 g to 3.2 g P ∙ m−2 yr−1) additions in a desert grassland of Kunlun Mountain in the northwest of China to investigate the effects of these addition rates on the N and P stoichiometry of the dominant grass species Seriphidium korovinii. Nitrogen and P additions both affected plant stoichiometry. N addition suppressed P concentrations, whereas P addition had no effect on plant N concentrations. The N:P ratios of green aboveground biomass (AGB) were positively correlated with N addition ranging from 14.73 to 29.08, whereas those for P additions decreased ranging from 14.73 to 8.29. N concentrations were positively correlated with soil available N:P ratios, whereas, P concentrations were negatively correlated with soil availably N:P. Our results suggest that chemistry and stoichiometry of S. korovinii was directly affected by soil nutrient availability. Soil N availability affects S. korovinii stoichiometry to a greater extent that does soil P availability in this ecosystem. These findings suggest that N-deposition could affect the stoichiometry of this desert grassland ecosystem, and thereby potentially alter litter decomposition, plant community composition, nutrient cycling, and food-web dynamics of these desert ecosystems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gabriel C. Runte ◽  
Alex H. Smith ◽  
Holly V. Moeller ◽  
Laura M. Bogar

Host and symbiont diversity are inextricably linked across partnerships and ecosystems, with degree of partner reliance governing the strength of this correlation. In many forest soils, symbiotic ectomycorrhizal fungi coexist and compete with free-living saprotrophic fungi, with the outcomes of these interactions shaping resource availability and competitive outcomes for the trees aboveground. Traditional approaches to characterizing these communities rely on DNA sequencing of a ribosomal precursor RNA gene (the internal transcribed spacer region), but directly sequencing the precursor rRNA may provide a more functionally relevant perspective on the potentially active fungal communities. Here, we map ectomycorrhizal and saprotrophic soil fungal communities through a mixed hardwood-conifer forest to assess how above- and belowground diversity linkages compare across these differently adapted guilds. Using highly spatially resolved transects (sampled every 2 m) and well-mapped stands of varying host tree diversity, we sought to understand the relative influence of symbiosis versus environment in predicting fungal diversity measures. Canopy species in this forest included two oaks (Quercus agrifolia and Quercus douglasii) and one pine (Pinus sabiniana). At the scale of our study, spatial turnover in rRNA-based communities was much more predictable from measurable environmental attributes than DNA-based communities. And while turnover of ectomycorrhizal fungi and saprotrophs were predictable by the presence and abundance of different canopy species, they both responded strongly to soil nutrient characteristics, namely pH and nitrogen availability, highlighting the niche overlap of these coexisting guilds and the strong influence of aboveground plants on belowground fungal communities.


2021 ◽  
Vol 13 (8) ◽  
pp. 4367
Author(s):  
Yoonhee Cho ◽  
Shinnam Yoo ◽  
Myung Soo Park ◽  
Ji Seon Kim ◽  
Chang Sun Kim ◽  
...  

Flooding is an environmental stress for plants that not only limits aeration and nutrient acquisition, but also disturbs underground plant-associated fungal communities. Despite frequent flooding, red pine (Pinus densiflora) seedlings thrive in streamside environments. However, whether the compatible ectomycorrhizal fungi (EMF) of red pine are affected by natural flooding is unclear. As EMF are vital symbionts for the development of many trees and allow them to overcome various environmental stresses, in this study, the EMF species associated with red pine seedlings in a streamside environment in Korea were investigated after flooding. The EMF species in 47 seedlings collected from the streamside site were identified by observing their different morphotypes using internal transcribed spacer sequence analysis, and a total of 10 EMF species were identified. The EMF species diversity was lower than that in samples collected from a nearby forest analyzed as a control. The dominant EMF species of streamside seedlings included Amphinema spp., Rhizopogon luteolus, Suillus luteus, and Thelephora terrestris. This study could serve as a basis for investigating the mechanisms by which advantageous EMF aid plant development under flooding stress.


2005 ◽  
Vol 65 (1) ◽  
pp. 141-157 ◽  
Author(s):  
J. J. Ramírez ◽  
C. E. M. Bicudo

The vertical and diurnal variation of nitrogen and phosphorus forms, as well as that of soluble reactive silica (SRS), were studied in four sampling days at Garças reservoir, a shallow tropical one located in the city of São Paulo, in southeastern Brazil. Except for N-NH4, all other inorganic forms of nitrogen (N-NO2, N-NO3, and total N) demonstrated decreased concentrations toward the bottom of reservoir. Similarly, all showed significant diurnal differences on every sampling day, with increased values during the night due to absence of photosynthetic assimilation during that period. In the sampling days, these forms decreased on the spring sampling day due to the bloom of Microcystis registered during this period of the year. All three forms of phosphorus (SRP, particulate P, and total P) showed significant vertical variation, except on the fall sampling day. On the summer sampling day there was an increase of both total P and particulate P, the latter because it constitutes more than 70% of the total P during all sampling days. Hourly phosphorus variation was significant during all sampling days, except for the summer one. The SRS vertical variation was significant during all sampling days, except for that in the spring. It was also different hourly on sampling days.


Sign in / Sign up

Export Citation Format

Share Document