scholarly journals Far‐red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato

2020 ◽  
Vol 228 (6) ◽  
pp. 1914-1925 ◽  
Author(s):  
Yongran Ji ◽  
Diego Nuñez Ocaña ◽  
Daegeun Choe ◽  
Dorthe H. Larsen ◽  
Leo F. M. Marcelis ◽  
...  
2019 ◽  
Vol 168 ◽  
pp. 103889 ◽  
Author(s):  
Yongran Ji ◽  
Theoharis Ouzounis ◽  
Sarah Courbier ◽  
Elias Kaiser ◽  
Phuong T. Nguyen ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 474d-474
Author(s):  
N.K. Damayanthi Ranwala ◽  
Dennis R. Decoteau

This study was conducted to evaluate the spectral properties of various colored plastic color mulches and to determine the effects of upwardly reflected light from the mulch surfaces on watermelon plant growth when differences in root zone temperatures are minimized. Two-week-old watermelon plants were grown with black mulch, red-painted mulch, SRM-Red mulch (Sonoco, Inc., Harstville, S.C.), and white mulch. Total light reflection (58 μmol·m–2·s–1 in 400–700 nm) and red: far-red (R:FR = 0.44) of reflected light were lower in black mulch and highest in white mulch (634 and 0.92, respectively). Both black mulch and white mulch had same blue:red (B:R = 0.6) while white mulch had higher B:FR (0.58) in reflected light compared to black mulch (0.26). Reflective properties of red mulches were somewhat similar, and R:FR, B:R, and B:FR were 0.8, 0.2, and 0.18, respectively. However, SRM-Red mulch had highest total light (355 μmol·m–2·s–1 in 400–700 nm) transmission through the mulch, and R:FR, B:R, and B:FR were 0.84, 0.28, and 0.23, respectively. Light transmission through the other mulches was nonsignificant. Watermelon plants grown with black mulch and red mulches had higher internode lengths compared to white mulch after 20 days. Further, plants grown under black had significant higher petiole elongation accompanied with higher dry mass partitioning to petioles, and lower partitioning to roots, stems, and leaves. There was no effects of surface mulch color on total plant dry mass or photosynthesis although plants with black had higher transpiration rate. This suggests the differential regulation of dry mass partitioning among plant parts due to mulch color. The similar plant responses with black mulch and white mulch to plants treated with FR or R light at the end of photoperiod implies the involvement of phytochrome regulation of growth due to mulch surface color.


2002 ◽  
Vol 29 (11) ◽  
pp. 1319 ◽  
Author(s):  
Corine C. de Groot ◽  
Leo F. M. Marcelis ◽  
Riki van den Boogaard ◽  
Hans Lambers

The interactive effects of irradiance and N on growth of young tomato plants (Lycopersicon esculentum Mill.) were studied. Plants were grown at 70 or 300 μmol photons m–2 s–1, hereafter referred to as 'low' and 'high' irradiance, and at a range of exponential N supply rates (70–370 mg g–1 d–1) or at a constant concentration in the nutrient solution of 12 mM NO3–. At both irradiance levels, leaf area ratio was more important than net assimilation rate (NAR) in explaining effects of N on growth at mild N limitation. However, at severe N limitation, NAR became the most important parameter, as indicated by calculated growth response coefficients. Furthermore, this study shows that N supply and growth irradiance interacted strongly. The decrease of specific leaf area with increasing N limitation and increasing growth irradiance correlated with increasing leaf dry mass percentage and starch concentration. Furthermore, at low irradiance, plants partitioned more dry mass to the stem. Dry mass partitioning to roots increased with decreasing plant N concentration, and this relation appeared to be independent of irradiance. Shading increased plant N concentration and decreased dry mass partitioning to roots. Also, the relationship between plant N concentration and N partitioning to different plant organs was largely independent of growth irradiance.


1997 ◽  
Vol 45 (4) ◽  
pp. 505-520
Author(s):  
J.W. Warringa ◽  
M.J. Marinissen

In greenhouse pot trials, L. perenne cv. Barlet plants were labelled with 13C at regular intervals from main spike emergence onwards in order to identify and measure the activity of source and sink organs during seed formation. The source activity of the various tiller groups within the plant roughly reflected the relative contributions of these groups to total plant dry mass. After anthesis there was little net exchange of 13C-label between the older and younger tiller groups. From main spike emergence onwards the source activity of the leaves of the reproductive tiller declined sharply, from 95% of total tiller photosynthesis to 16% at final cutting. The spike became the main assimilating organ on the flowering tiller as the leaves aged. During anthesis the stem was a stronger sink than the seeds. At final cutting 70% of the label was located in the stem, when fixed during anthesis. Water-soluble carbohydrates accumulated in the stem, forming up to 25% of dry matter. After anthesis the sink strength of the developing seeds increased and that of the stem decreased and the stem remained a net sink organ up to about mid-seed filling. Pre-anthesis assimilates contributed 14% to final seed and spikelet carbon, when correcting for the palea and lemma that are present before anthesis. These results show that the stem is a temporary storage organ that can support seed filling. However, only a small amount of the stem reserves was used by the seeds. In contrast to carbon, nitrogen was largely redistributed from the stem and leaves to the seeds. At final harvest 59% of the nitrogen in the flowering tiller was located in the seeds.


2001 ◽  
Vol 24 (12) ◽  
pp. 1309-1317 ◽  
Author(s):  
C. C. De Groot ◽  
L. F. M. Marcelis ◽  
R. Van Den Boogaard ◽  
H. Lambers

Sign in / Sign up

Export Citation Format

Share Document