scholarly journals Application of a newly developed large‐scale conceptual hydrological model in simulating streamflow for credibility testing in data scarce condition

2020 ◽  
Vol 33 (4) ◽  
Author(s):  
Pranesh K. Paul ◽  
Babita Kumari ◽  
Srishti Gaur ◽  
Ashok Mishra ◽  
Niranjan Panigrahy ◽  
...  
2018 ◽  
Vol 101 ◽  
pp. 23-33 ◽  
Author(s):  
Pranesh Kumar Paul ◽  
Nikul Kumari ◽  
Niranjan Panigrahi ◽  
Ashok Mishra ◽  
Rajendra Singh

2019 ◽  
Vol 24 (4) ◽  
pp. 04019004 ◽  
Author(s):  
Pranesh Kumar Paul ◽  
Srishti Gaur ◽  
Babita Kumari ◽  
Niranjan Panigrahy ◽  
Ashok Mishra ◽  
...  

Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Kleoniki Demertzi ◽  
Vassilios Pisinaras ◽  
Emanuel Lekakis ◽  
Evangelos Tziritis ◽  
Konstantinos Babakos ◽  
...  

Simple formulas for estimating annual actual evapotranspiration (AET) based on annual climate data are widely used in large scale applications. Such formulas do not have distinct compartments related to topography, soil and irrigation, and for this reason may be limited in basins with high slopes, where runoff is the dominant water balance component, and in basins where irrigated agriculture is dominant. Thus, a simplistic method for assessing AET in both natural ecosystems and agricultural systems considering the aforementioned elements is proposed in this study. The method solves AET through water balance based on a set of formulas that estimate runoff and percolation. These formulas are calibrated by the results of the deterministic hydrological model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) for a reference surface. The proposed methodology is applied to the country of Greece and compared with the widely used climate-based methods of Oldekop, Coutagne and Turk. The results show that the proposed methodology agrees very well with the method of Turk for the lowland regions but presents significant differences in places where runoff is expected to be very high (sloppy areas and areas of high rainfall, especially during December–February), suggesting that the proposed method performs better due to its runoff compartment. The method can also be applied in a single application considering irrigation only for the irrigated lands to more accurately estimate AET in basins with a high percentage of irrigated agriculture.


2021 ◽  
Author(s):  
Moctar Dembélé ◽  
Bettina Schaefli ◽  
Grégoire Mariéthoz

<p>The diversity of remotely sensed or reanalysis-based rainfall data steadily increases, which on one hand opens new perspectives for large scale hydrological modelling in data scarce regions, but on the other hand poses challenging question regarding parameter identification and transferability under multiple input datasets. This study analyzes the variability of hydrological model performance when (1) a set of parameters is transferred from the calibration input dataset to a different meteorological datasets and reversely, when (2) an input dataset is used with a parameter set, originally calibrated for a different input dataset.</p><p>The research objective is to highlight the uncertainties related to input data and the limitations of hydrological model parameter transferability across input datasets. An ensemble of 17 rainfall datasets and 6 temperature datasets from satellite and reanalysis sources (Dembélé et al., 2020), corresponding to 102 combinations of meteorological data, is used to force the fully distributed mesoscale Hydrologic Model (mHM). The mHM model is calibrated for each combination of meteorological datasets, thereby resulting in 102 calibrated parameter sets, which almost all give similar model performance. Each of the 102 parameter sets is used to run the mHM model with each of the 102 input datasets, yielding 10404 scenarios to that serve for the transferability tests. The experiment is carried out for a decade from 2003 to 2012 in the large and data-scarce Volta River basin (415600 km2) in West Africa.</p><p>The results show that there is a high variability in model performance for streamflow (mean CV=105%) when the parameters are transferred from the original input dataset to other input datasets (test 1 above). Moreover, the model performance is in general lower and can drop considerably when parameters obtained under all other input datasets are transferred to a selected input dataset (test 2 above). This underlines the need for model performance evaluation when different input datasets and parameter sets than those used during calibration are used to run a model. Our results represent a first step to tackle the question of parameter transferability to climate change scenarios. An in-depth analysis of the results at a later stage will shed light on which model parameterizations might be the main source of performance variability.</p><p>Dembélé, M., Schaefli, B., van de Giesen, N., & Mariéthoz, G. (2020). Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa. Hydrology and Earth System Sciences (HESS). https://doi.org/10.5194/hess-24-5379-2020</p>


2014 ◽  
Vol 50 (6) ◽  
pp. 5044-5073 ◽  
Author(s):  
Marie Minville ◽  
Dominique Cartier ◽  
Catherine Guay ◽  
Louis-Alexandre Leclaire ◽  
Charles Audet ◽  
...  

2020 ◽  
Author(s):  
Ali Fallah ◽  
Sungmin O ◽  
Rene Orth

Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world. The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data. This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modelling. For this purpose, we force a conceptual hydrological model with multiple precipitation datasets in > 200 European catchments. We consider a wide range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2) combination of multiple sources (MSWEP V2) and (3) data assimilation into reanalysis models (ERA-Interim, ERA5, and CFSR). For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation products. Evaluation is done at the monthly time scale during the period of 1984–2007. We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions.


2009 ◽  
Vol 52 (4) ◽  
pp. 762-771 ◽  
Author(s):  
Bin YONG ◽  
Li-Liang REN ◽  
Xi CHEN ◽  
Yun ZHANG ◽  
Wan-Chang ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document