scholarly journals BED‐domain‐containing NLR from wild barley confers resistance to leaf rust

Author(s):  
Chunhong Chen ◽  
Matthias Jost ◽  
Bethany Clark ◽  
Matthew Martin ◽  
Oadi Matny ◽  
...  
Keyword(s):  
Crop Science ◽  
1986 ◽  
Vol 26 (4) ◽  
pp. 727-730 ◽  
Author(s):  
J. Manisterski ◽  
Linda Treeful ◽  
J. R. Tomerlin ◽  
Y. Anikster ◽  
J. G. Moseman ◽  
...  
Keyword(s):  

2007 ◽  
Vol 58 (6) ◽  
pp. 532 ◽  
Author(s):  
Brian J. Steffenson ◽  
Pablo Olivera ◽  
Joy K. Roy ◽  
Yue Jin ◽  
Kevin P. Smith ◽  
...  

Leaf rust, stem rust, and stripe rust are among the most important diseases of wheat and barley worldwide and are best controlled using genetic resistance. To increase the diversity of rust resistance in wheat and barley, a project was initiated to identify and characterise rust resistance genes from the wild species of Aegilops sharonensis (Sharon goatgrass) and Hordeum vulgare ssp. spontaneum (wild barley), respectively. One hundred and two accessions of Sharon goatgrass from Israel and 318 Wild Barley Diversity Collection (WBDC) accessions from the Fertile Crescent, Central Asia, North Africa, and the Caucasus region were evaluated for resistance to leaf rust, stem rust, and/or stripe rust. Sharon goatgrass exhibited a wide range of infection types (ITs) in response to leaf rust, stem rust, and stripe rust. The percentage of resistant accessions in Sharon goatgrass was 58.8–78.4% for leaf rust, 11.8–69.6% for stem rust, and 46.1% for stripe rust, depending on the race used and the plant growth stage. Genetic studies with Sharon goatgrass revealed oligogenic resistance to leaf rust and stem rust. Wild barley also exhibited a wide range of ITs to leaf rust and stem rust; however, the overall frequency of resistance was lower than for Sharon goatgrass. The percentage of resistant accessions in wild barley was 25.8% for leaf rust and 5.7–20.1% for stem rust, depending on the race used. Resistance to the new virulent stem rust race TTKS (i.e. Ug99), present in eastern Africa, was found in both Sharon goatgrass (70% of accessions) and wild barley (25% of 20 accessions tested). Association mapping for stem rust resistance was applied in the WBDC using Diversity Arrays Technology (DArT) markers. Using the highly conservative P value threshold of 0.001, 14 and 15 significant marker associations were detected when the number of subpopulations (K value) was set for 10 and 8, respectively. These significant associations were in 9 and 8 unique chromosome bins, respectively. Two significant marker associations were detected for resistance to the wheat stem rust race MCCF in the same bin as the rpg4/Rpg5 complex on chromosome 7(5H). The presence of a major stem rust resistance gene in this bin on chromosome 7(5H) was validated in a bi-parental mapping population (WBDC accession Damon × cv. Harrington) constructed with DArT markers. The results from this study indicate that Sharon goatgrass and wild barley are rich sources of rust resistance genes for cultivated wheat and barley improvement, respectively, and that association mapping may be useful for positioning disease resistance genes in wild barley.


2020 ◽  
Vol 133 (6) ◽  
pp. 1887-1895 ◽  
Author(s):  
Matthias Jost ◽  
Davinder Singh ◽  
Evans Lagudah ◽  
Robert F. Park ◽  
Peter Dracatos

2021 ◽  
Author(s):  
Hoan Dinh ◽  
Davinder Singh ◽  
Diana Cruz ◽  
Goetz Hensel ◽  
Martin Mascher ◽  
...  

Abstract Host resistance is considered the most effective means to control plant diseases; however, individually deployed resistance genes are often rapidly overcome by pathogen adaptation. Combining multiple effective resistance genes is the optimal approach to durable resistance, but the lack of functional markers for resistance genes has hampered implementation. Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major Resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. Expression profiling using P. hordei isolates with contrasting pathogenicity for the Rph3 host locus showed that the Rph3 gene was expressed only in interactions with Rph3-avirulent isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like the known transmembrane executors such as Bs3 and Xa7 heterologous expression of Rph3 in N. benthamiana induced a cell death response. Given that Rph3 shares several features with executor genes, it seems likely that P. hordei contains effectors similar to the transcription activator-like effectors that target host executor genes. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots and provide evidence for executor genes in the Triticeae tribe.


Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 363-372 ◽  
Author(s):  
Zahra Nemati ◽  
Reza Mostowfizadeh-Ghalamfarsa ◽  
Ali Dadkhodaie ◽  
Rahim Mehrabi ◽  
Brian J. Steffenson

The wheat leaf rust fungus, Puccinia triticina, has widespread geographical distribution in Iran within the Fertile Crescent region of the Middle East where wheat was domesticated and P. triticina originated. Therefore, it is of great importance to identify the prevalence and distribution of P. triticina pathotypes in this area. From 2010 to 2017, 241 single-uredinium isolates of P. triticina were purified from 175 collections of P. triticina made from various hosts in 14 provinces of Iran, and they were tested on 20 Thatcher near-isogenic lines carrying single-leaf rust resistance genes. In total, 86 pathotypes were identified, of which the pathotypes FDTTQ, FDKPQ, FDKTQ, and FDTNQ were most prevalent. No virulence for Lr2a was detected, whereas virulence for Lr1 was found only on bread wheat in a few provinces in 2016. Only isolates from durum wheat and wild barley were virulent to Lr28. Although virulence for Lr9, Lr20, and Lr26 was observed in some years, the virulence frequency for these genes was lower than that of the other Lr genes. P. triticina collections from host plants with different ploidy levels or genetically dissimilar backgrounds were grouped individually according to genetic distance. Based on these results, collections from barley, durum wheat, oat, triticale, and wild barley were different from those of bread wheat.


Sign in / Sign up

Export Citation Format

Share Document