dart markers
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 8)

H-INDEX

27
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Abdulwahab S. Shaibu ◽  
Hassan Ibrahim ◽  
Zainab L. Miko ◽  
Ibrahim B. Mohammed ◽  
Sanusi G. Mohammed ◽  
...  

Knowledge of the genetic structure and diversity of germplasm collections is crucial for sustainable genetic improvement through hybridization programs and rapid adaptation to changing breeding objectives. The objective of this study was to determine the genetic diversity and population structure of 281 International Institute of Tropical Agriculture (IITA) soybean accessions using diversity array technology (DArT) and single nucleotide polymorphism (SNP) markers for the efficient utilization of these accessions. From the results, the SNP and DArT markers were well distributed across the 20 soybean chromosomes. The cluster and principal component analyses revealed the genetic diversity among the 281 accessions by grouping them into two stratifications, a grouping that was also evident from the population structure analysis, which divided the 281 accessions into two distinct groups. The analysis of molecular variance revealed that 97% and 98% of the genetic variances using SNP and DArT markers, respectively, were within the population. Genetic diversity indices such as Shannon’s diversity index, diversity and unbiased diversity revealed the diversity among the different populations of the soybean accessions. The SNP and DArT markers used provided similar information on the structure, diversity and polymorphism of the accessions, which indicates the applicability of the DArT marker in genetic diversity studies. Our study provides information about the genetic structure and diversity of the IITA soybean accessions that will allow for the efficient utilization of these accessions in soybean improvement programs, especially in Africa.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2585
Author(s):  
Amira M. I. Mourad ◽  
Mohamed A. Abou-Zeid ◽  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Andreas Börner

Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in marker-assisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1451
Author(s):  
Kodjo M. Gbedevi ◽  
Ousmane Boukar ◽  
Haruki Ishikawa ◽  
Ayodeji Abe ◽  
Patrick O. Ongom ◽  
...  

Crop genetic diversity is a sine qua non for continuous progress in the development of improved varieties, hence the need for germplasm collection, conservation and characterization. Over the years, cowpea has contributed immensely to the nutrition and economic life of the people in Togo. However, the bulk of varieties grown by farmers are landraces due to the absence of any serious genetic improvement activity on cowpea in the country. In this study, the genetic diversity and population structure of 255 cowpea accessions collected from five administrative regions and the agricultural research institute of Togo were assessed using 4600 informative diversity array technology (DArT) markers. Among the regions, the polymorphic information content (PIC) ranged from 0.19 to 0.27 with a mean value of 0.25. The expected heterozygosity (He) varied from 0.22 to 0.34 with a mean value of 0.31, while the observed heterozygosity (Ho) varied from 0.03 to 0.07 with an average of 0.05. The average inbreeding coefficient (FIS) varied from 0.78 to 0.89 with a mean value of 0.83, suggesting that most of the accessions are inbred. Cluster analysis and population structure identified four groups with each comprising accessions from the six different sources. Weak to moderate differentiation was observed among the populations with a genetic differentiation index varying from 0.014 to 0.117. Variation was highest (78%) among accessions within populations and lowest between populations (7%). These results revealed a moderate level of diversity among the Togo cowpea germplasm. The findings of this study constitute a foundation for genetic improvement of cowpea in Togo.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1149
Author(s):  
Ludovic J. A. Capo-chichi ◽  
Sharla Eldridge ◽  
Ammar Elakhdar ◽  
Takahiko Kubo ◽  
Robert Brueggeman ◽  
...  

Seed vigour is considered a critical stage for barley production, and cultivars with early seedling vigour (ESV) facilitate rapid canopy formation. In this study, QTLs for 12 ESV-related traits were mapped using 185 RILs derived from a Xena x H94061120 evaluated across six independent environments. DArT markers were used to develop a genetic map (1075.1 cM; centimorgans) with an average adjacent-marker distance of 3.28 cM. In total, 46 significant QTLs for ESV-related traits were detected. Fourteen QTLs for biomass yield were found on all chromosomes, two of them co-localized with QTLs on 1H for grain yield. The related traits: length of the first and second leaves and dry weight of the second leaf, biomass yield and grain yield, had high heritability (>30%). Meanwhile, a significant correlation was observed between grain yield and biomass yield, which provided a clear image of these traits in the selection process. Our results demonstrate that a pleiotropic QTL related to the specific leaf area of the second leaf, biomass yield, and grain yield was linked to the DArT markers bPb-9280 and bPb-9108 on 1H, which could be used to significantly improve seed vigour by marker-assisted selection and facilitate future map-based cloning efforts.


2020 ◽  
pp. 1-14
Author(s):  
Abdulwahab S. Shaibu ◽  
Zainab L. Miko ◽  
Hakeem A. Ajeigbe ◽  
Sanusi G. Mohammed ◽  
Alhassan Usman ◽  
...  
Keyword(s):  

2020 ◽  
Vol 99 (1) ◽  
Author(s):  
Ana Luísa Garcia-Oliveira ◽  
Zewdneh Zana Zate ◽  
Bunmi Olasanmi ◽  
Ousmane Boukar ◽  
Melaku Gedil ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 791
Author(s):  
Mian Zhang ◽  
Man-Man Fu ◽  
Cheng-Wei Qiu ◽  
Fangbin Cao ◽  
Zhong-Hua Chen ◽  
...  

Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H+K+-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai–Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.


2018 ◽  
Vol 46 (4) ◽  
pp. 591-603
Author(s):  
J.Q. Xu ◽  
L. Wang ◽  
B.L. Liu ◽  
T.F. Xia ◽  
D.C. Liu ◽  
...  

2018 ◽  
Vol 38 (9) ◽  
Author(s):  
Duygu Ates ◽  
Tansel Kaygisiz Asciogul ◽  
Seda Nemli ◽  
Semih Erdogmus ◽  
Dursun Esiyok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document