AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley

2005 ◽  
Vol 111 (3) ◽  
pp. 583-590 ◽  
Author(s):  
M. von Korff ◽  
H. Wang ◽  
J. Léon ◽  
K. Pillen
2011 ◽  
Vol 47 (No. 2) ◽  
pp. 45-57 ◽  
Author(s):  
N.A. Hovhannisyan ◽  
M.E. Dulloo ◽  
A.H. Yesayan ◽  
H. Knüpffer ◽  
A. Amri

Wild Triticum and Aegilops species are increasingly used in wheat breeding programmes around the world as donors of genes conferring resistance to biotic and abiotic stresses, as well as of genes that contribute to the improvement of grain quality. In the present study, thirty-nine accessions of diploid species with the A genome (Triticum boeoticum and T. urartu) were evaluated for the presence of the genes conferring resistance to powdery mildew (Blumeria graminis) and leaf rust (Puccinia recondita) using both inoculation tests and sequence tagged sites (STS) marker analyses in order to find correspondence between STS markers and resistance as a trait. The most resistant entries were T. boeoticum accessions. All the marked Lr and Pm resistance genes (Pm1, Pm2, Pm3, Lr10, Lr47, Lr25 and Lr28) were identified in the check T. aestivum cultivar Bezostaya 1. The resistance to powdery mildew in the material studied was conferred by the combination of the Pm1 gene with either Pm2 or Pm3. The Pm1 and Pm3 markers appeared to be suitable for tracking these powdery mildew resistance genes, while the Pm2 gene marker cannot be considered as usable in various genetically different wheat accessions. The presence of the genes Lr25, Lr28 and Lr47 seems to be particularly useful for obtaining leaf rust resistance in T. boeoticum and T. urartu species.  


2011 ◽  
Vol 59 (3) ◽  
pp. 241-248 ◽  
Author(s):  
G. Vida ◽  
M. Cséplő ◽  
G. Gulyás ◽  
I. Karsai ◽  
T. Kiss ◽  
...  

Among the factors which determine yield reliability an important role is played by disease resistance. One of the breeding aims in the Martonvásár institute is to develop wheat varieties with resistance to major diseases. The winter wheat varieties bred in Martonvásár are examined in artificially inoculated nurseries and greenhouses for resistance to economically important pathogens. The effectiveness of designated genes for resistance to powdery mildew and leaf rust has been monitored over a period of several decades. None of the designated major resistance genes examined in greenhouse tests is able to provide complete resistance to powdery mildew; however, a number of leaf rust resistance genes provide full protection against pathogen attack (Lr9, Lr19, Lr24, Lr25, Lr28 and Lr35). In the course of marker-assisted selection, efficient resistance genes (Lr9, Lr24, Lr25 and Lr29) have been incorporated into Martonvásár wheat varieties. The presence of Lr1, Lr10, Lr26, Lr34 and Lr37 in the Martonvásár gene pool was identified using molecular markers. New sources carrying alien genetic material have been tested for powdery mildew and leaf rust resistance. Valuable Fusarium head blight resistance sources have been identified in populations of old Hungarian wheat varieties. Species causing leaf spots (Pyrenophora tritici-repentis, Septoria tritici and Stagonospora nodorum) have gradually become more frequent over the last two decades. Tests on the resistance of the host plant were begun in Martonvásár four years ago and regular greenhouse tests on seedlings have also been initiated.


2010 ◽  
Vol 40 (No. 4) ◽  
pp. 135-140 ◽  
Author(s):  
A. Dreiseitl

The virulence frequencies to powdery mildew resistance genes possessed by winter barley cultivars registered and newly tested in the Czech Republic were studied in 2000, 2002 and 2004. Random samples of the populations originating from winter and spring barley fields were obtained from the air by a mobile version of a jet spore sampler mounted on a car roof. Conidia were sampled by driving across the Czech Republic. Fourteen differentials, carrying 18 out of 20 currently identified resistance genes present in winter barley cultivars, were used. High virulence frequencies (85–100%) to most resistance genes were found. Lower virulence frequencies (14.1–40.1%) were found to only three resistance genes that have not been described yet; their preliminary designations are Ml(Va), Ml(Dt) and Ml(Ca). The importance of resistance of winter barley cultivars is discussed with respect to limiting the speed with which the pathogen adapts to genetic resistances possessed by commercial cultivars of both winter and spring barley, and to the necessity of lowering the costs for powdery mildew control in barley.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 971 ◽  
Author(s):  
Antonín Dreiseitl

Powdery mildew caused by the airborne ascomycete fungus Blumeria graminis f. sp. hordei (Bgh) is one of most common diseases of barley (Hordeum vulgare). This, as with many other plant pathogens, can be efficiently controlled by inexpensive and environmentally-friendly genetic resistance. General requirements for resistance to the pathogens are effectiveness and durability. Resistance of barley to Bgh has been studied intensively, and this review describes recent research and summarizes the specific resistance genes found in barley varieties since the last conspectus. Bgh is extraordinarily adaptable, and some commonly recommended strategies for using genetic resistance, including pyramiding of specific genes, may not be effective because they can only contribute to a limited extent to obtain sufficient resistance durability of widely-grown cultivars. In spring barley, breeding the nonspecific mlo gene is a valuable source of durable resistance. Pyramiding of nonspecific quantitative resistance genes or using introgressions derived from bulbous barley (Hordeum bulbosum) are promising ways for breeding future winter barley cultivars. The utilization of a wide spectrum of nonhost resistances can also be adopted once practical methods have been developed.


2005 ◽  
Vol 85 (2) ◽  
pp. 93-100 ◽  
Author(s):  
BEAT KELLER ◽  
CATHERINE FEUILLET ◽  
NABILA YAHIAOUI

The genome of bread wheat is hexaploid and contains 1·6×1010 bp of DNA, of which more than 80% is repetitive sequences. Its size and complexity represent a challenge for the isolation of agronomically important genes, for which we frequently know only their position on the genetic map. Recently, new genomic resources and databases from genome projects have simplified the molecular analysis of the wheat genome. The first genes to be isolated from wheat by map-based cloning include three resistance genes against the fungal diseases powdery mildew and leaf rust. In this review, we will describe the approaches and resources that have contributed to this progress, and discuss genomic strategies that will simplify positional cloning in wheat in the near future.


2011 ◽  
Vol 39 (No. 2) ◽  
pp. 31-44 ◽  
Author(s):  
A. Dreiseitl ◽  
P. Pařízek

Resistance to powdery mildew of 127 spring barley varieties was evaluated in 702 official variety trials, using scores from 1 to 9. Trials with sufficient disease severity were only analysed. Varieties possessing the resistance genes Mla7 (Elgina), Ml(Kr) (BR-1519), Mla13 (Koral) and mlo (Forum) were among the most resistant ones. The varieties Diamant, HE-3527, HE-3631, II/61-FUDII and Zefir showed high susceptibility. Fifteen varieties, carrying the genes Mla1, Mla3, Mla6, Mla9, Mla13, Ml(Kr) and Ml(Sc), were in the first years of testing highly resistant, but became susceptible later. The score of the most resistant variety ranged each year from 8.05 to 9.00, only in 1987–1991 it was lower. Since the pathogen population rapidly adapted to most resistance genes in the mid eighties, no resistant variety was found in 1987–1989. From 1986 to 1995 on average only 6.6% of the tested varieties were resistant, but there was no variety with resistance score above 8.50. High resistance was typical for varieties possessing an effective major resistance gene. Since the resistance of such varieties was not durable, we recommend breeding of varieties with at least two fully effective resistance genes, using molecular markers.  


Sign in / Sign up

Export Citation Format

Share Document