Development and molecular cytogenetic identification of a new wheat-Leymus mollisLm#6Ns disomic addition line

2016 ◽  
Vol 135 (6) ◽  
pp. 654-662
Author(s):  
Xiaofei Yang ◽  
Changyou Wang ◽  
Xin Li ◽  
Zengrong Tian ◽  
Chunhuan Chen ◽  
...  
2020 ◽  
Vol 21 (11) ◽  
pp. 4053
Author(s):  
Liqiang Song ◽  
Hui Zhao ◽  
Zhi Zhang ◽  
Shuai Zhang ◽  
Jiajia Liu ◽  
...  

Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134534 ◽  
Author(s):  
Diaoguo An ◽  
Qi Zheng ◽  
Qiaoling Luo ◽  
Pengtao Ma ◽  
Hongxia Zhang ◽  
...  

2020 ◽  
Vol 67 (8) ◽  
pp. 2213-2223 ◽  
Author(s):  
Qingfeng Li ◽  
Yuqing Lu ◽  
Cuili Pan ◽  
Zhangjun Wang ◽  
Fenglou Liu ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0165957 ◽  
Author(s):  
Qingfeng Li ◽  
Yuqing Lu ◽  
Cuili Pan ◽  
Miaomiao Yao ◽  
Jinpeng Zhang ◽  
...  

2020 ◽  
Vol 160 (1) ◽  
pp. 47-56
Author(s):  
Aybeniz J. Aliyeva ◽  
András Farkas ◽  
Naib Kh. Aminov ◽  
Klaudia Kruppa ◽  
Márta Molnár-Láng ◽  
...  

The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.


Genome ◽  
2014 ◽  
Vol 57 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Wanli Du ◽  
Jing Wang ◽  
Yuhui Pang ◽  
Liangming Wang ◽  
Jun Wu ◽  
...  

We isolated a wheat germplasm line, 22-2, which was derived from common wheat (Triticum aestivum ‘7182’) and Psathyrostachys huashanica ‘Keng’ (2n = 2x = 14, NsNs). Genomic composition and homoeologous relationships of 22-2 was analyzed using cytology, genomic in situ hybridization (GISH), EST–SSR, and EST–STS to characterize the alien chromatin in the transfer line. The cytological investigations showed that the chromosome number and configuration were 2n = 44 = 22 II. Mitotic and meiotic GISH using P. huashanica genomic DNA as the probe indicated that 22-2 contained a pair of P. huashanica chromosomes. The genomic affinities of the introduced P. huashanica chromosomes were determined by EST–SSR and EST–STS using multiple-loci markers from seven wheat homoeologous groups between the parents and addition line. One EST–SSR and 17 EST–STS markers, which were located on the homoeologous group 3 chromosomes of wheat, amplified polymorphic bands in 22-2 that were unique to P. huashanica. Thus, these markers suggested that the introduced Ns chromosome pair belonged to homoeologous group 3, so we designated 22-2 as a 3Ns disomic addition line. Based on disease reaction to mixed races (CYR31, CYR32, and Shuiyuan14) of stripe rust in the adult stages, 22-2 was found to have high resistance to stripe rust, which was possibly derived from its P. huashanica parent. Consequently, the new disomic addition line 22-2 could be a valuable donor source for wheat improvement depending on the excellent agronomic traits, especially, the introduction of novel disease resistance genes into wheat during breeding programs.


Sign in / Sign up

Export Citation Format

Share Document