Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat

2020 ◽  
Vol 43 (4) ◽  
pp. 854-865 ◽  
Author(s):  
Déborah Corso ◽  
Sylvain Delzon ◽  
Laurent J. Lamarque ◽  
Hervé Cochard ◽  
José M. Torres‐Ruiz ◽  
...  
1989 ◽  
Vol 16 (5) ◽  
pp. 415 ◽  
Author(s):  
CR Jensen ◽  
IE Henson ◽  
NC Turner

Plants of Lupinus cosentinii Guss. cv. Eregulla were grown in a sandy soil in large containers in a glasshouse and exposed to drought by withholding water. Under these conditions stomatal closure had previously been shown to be initiated before a significant reduction in leaf water potential was detected. In the experiments reported here, no significant changes were found in water potential or turgor pressure of roots or leaves when a small reduction in soil water potential was induced which led to a 60% reduction in leaf conductance. The decrease in leaf conductance and root water uptake closely paralleled the fraction of roots in wet soil. By applying observed data of soil water and root characteristics, and root water uptake for whole pots in a single-root model, the average water potential at the root surface was calculated. Potential differences for water transport in the soil-plant system, and the resistances to water flow were estimated using the 'Ohm's Law' analogy for water transport. Soil resistance was negligible or minor, whereas the root resistance accounted for 61-72% and the shoot resistance accounted for about 30% of the total resistance. The validity of the measurements and calculations is discussed and the possible role of root- to-shoot communication raised.


1982 ◽  
Vol 30 (4) ◽  
pp. 393 ◽  
Author(s):  
P Dawson ◽  
G Weste

Changes in water relations associated with infection by Phytophthora cinnamomi were measured for three native species from the Brisbane Ranges forest. Measurements included leaf conductance, stomatal aperture, transpiration, water potential and relative water content in container-grown plants of Isopogon ceratophyllus (highly susceptible), Eucalyptus macrorhyncha (field-susceptible) and E. goniocalyx (field-resistant) maintained in a glasshouse. I. Ceratophyllus showed a large and highly significant difference in water relations between infected and control plants. Infection was associated with stomatal closure, reduced transpiration, reduced relative water content and leaf water potential. These reactions to infection were not observed for either of the glasshouse-reared Eucalyptus species. In the forest diseased E. macrorhyncha showed significant differences in leaf conductance compared with healthy trees, whereas E. goniocalyx forest trees showed less infection-associated variation. This variation in leaf conductance was not associated with water stress.


1989 ◽  
Vol 16 (5) ◽  
pp. 401 ◽  
Author(s):  
IE Henson ◽  
CR Jensen ◽  
NC Turner

The effects of a progressive increase in soil water deficit on the leaf conductance and gas exchange of lupin (Lupinus cosentinii) and wheat (Triticum aestivum) were investigated in pot experiments in a temperature-regulated glasshouse, using a coarse, sandy soil characteristic of the Western Australian wheatbelt. Transpiration rates decreased rapidly in both species after water was withheld, mainly as a result of stomatal closure. Photosynthesis declined also, but to a lesser extent than conductance. Leaf extension in lupin was equally as sensitive to a decrease in leaf water potential and soil water potential as stomatal conductance. Stomatal closure served to maintain the water potential of lupin leaves to within 0.1 MPa of that of control (watered) plants as the soil water content decreased from 0.14 to 0.06 m3 m-3 and as the leaf conductance and the relative transpiration rate fell to less than 50% of control values. Maintenance of leaf water potential with decreasing soil water content and stomatal conductance was less evident in wheat. In both lupin and wheat, leaf conductance decreased linearly with soil water content and curvilinearly with bulk soil matric potential, indicating that water uptake was restricted at similar water contents and matric potentials in both species. Diurnal measurements on lupin indicated a substantial reduction in stomatal conductance after water was withheld, even when the leaf water potential at midday was reduced by only 0.1 MPa and no change could be detected in the bulk leaf turgor pressure. Conductance in lupin was reduced even though the soil matric potential decreased in only part of the rooting zone. This, together with the absence of any significant change in the leaf water potential, turgor pressure, or relative water content in lupin during the initial stages of stomatal closure, suggests that a soil or root factor initiates the reduction in leaf conductance - and hence regulates the shoot water status - in response to soil drying.


1986 ◽  
Vol 13 (4) ◽  
pp. 459 ◽  
Author(s):  
T Gollan ◽  
RA Richards ◽  
HM Rawson ◽  
JB Passioura ◽  
DA Johnson ◽  
...  

Wheat and sunflower were grown in pots that could be enclosed in a pressure chamber, with the shoot in a cuvette. Applying an appropriate pneumatic pressure to the roots enabled the leaves to be kept fully turgid despite any drying of the soil. The leaf conductance of plants was followed while the soil dried. Remarkably, this conductance fell with falling soil water content no matter whether the leaves were kept fully turgid or not. It is concluded that the roots sensed the drying of the soil and sent a message to the leaves which induced stomatal closure.


Sign in / Sign up

Export Citation Format

Share Document