scholarly journals Molecular underpinnings of methyl jasmonate‐induced resistance in Norway spruce

2020 ◽  
Vol 43 (8) ◽  
pp. 1827-1843
Author(s):  
Melissa H. Mageroy ◽  
Samuel W. Wilkinson ◽  
Torstein Tengs ◽  
Hugh Cross ◽  
Marit Almvik ◽  
...  
Author(s):  
Samuel Wilkinson ◽  
Lars Dalen ◽  
Thomas Skrautvol ◽  
Jurriaan Ton ◽  
Paal Krokene ◽  
...  

Norway spruce (Picea abies) is an economically and ecologically important tree species that grows across northern and central Europe. Treating Norway spruce with jasmonate has long-lasting beneficial effects on tree resistance to damaging pests, such as the European spruce bark beetle Ips typographus and its fungal associates. The potential involvement of (epi)genetic mechanisms in this long-lasting jasmonate-induced resistance (IR) has gained much recent interest, but remains largely unknown. In this study, we treated 2-year-old spruce seedlings with methyl jasmonate (MeJA) and challenged them with the I. typographus vectored necrotrophic fungus Grosmannia penicillata. MeJA treatment reduced the extent of necrotic lesions in the bark and thus elicited IR to the fungus. The transcriptional response of spruce bark to MeJA treatment was analyzed over a 4-week time course using mRNA-seq. This analysis provided evidence that MeJA treatment induced a transient upregulation of jasmonic acid, salicylic acid and ethylene biosynthesis and downstream signaling genes. Additionally, genes encoding components of the RNA-directed DNA methylation pathway showed long-term repression, suggesting a possible role of DNA demethylation in the maintenance of MeJA-IR. These results provide new clues about the potential mechanisms underpinning long-term MeJA-IR in Norway spruce.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adriana Puentes ◽  
Tao Zhao ◽  
Lina Lundborg ◽  
Niklas Björklund ◽  
Anna-Karin Borg-Karlson

An essential component of plant defense is the change that occurs from a constitutive to an induced state following damage or infection. Exogenous application of the plant hormone methyl jasmonate (MeJA) has shown great potential to be used as a defense inducer prior to pest exposure, and could be used as a plant protection measure. Here, we examined (1) the importance of MeJA-mediated induction for Norway spruce (Picea abies) resistance against damage by the pine weevil Hylobius abietis, which poses a threat to seedling survival, and infection by the spruce bark beetle-associated blue-stain fungus Endoconidiophora polonica, (2) genotypic variation in MeJA-induced defense (terpene chemistry), and (3) correlations among resistance to each pest. In a semi-field experiment, we exposed rooted-cuttings from nine different Norway spruce clones to insect damage and fungal infection separately. Plants were treated with 0, 25, or 50 mM MeJA, and planted in blocks where only pine weevils were released, or in a separate block in which plants were fungus-inoculated or not (control group). As measures of resistance, stem area debarked and fungal lesion lengths were assessed, and as a measure of defensive capacity, terpene chemistry was examined. We found that MeJA treatment increased resistance to H. abietis and E. polonica, but effects varied with clone. Norway spruce clones that exhibited high constitutive resistance did not show large changes in area debarked or lesion length when MeJA-treated, and vice versa. Moreover, insect damage negatively correlated with fungal infection. Clones receiving little pine weevil damage experienced larger lesion lengths, and vice versa, both in the constitutive and induced states. Changes in absolute terpene concentrations occurred with MeJA treatment (but not on proportional terpene concentrations), however, variation in chemistry was mostly explained by differences between clones. We conclude that MeJA can enhance protection against H. abietis and E. polonica, but the extent of protection will depend on the importance of constitutive and induced resistance for the Norway spruce clone in question. Trade-offs among resistances do not necessarily hinder the use of MeJA, as clones that are constitutively more resistant to either pest, should show greater MeJA-induced resistance against the other.


Plant Gene ◽  
2021 ◽  
pp. 100301
Author(s):  
Samuel W. Wilkinson ◽  
Adam Vivian-Smith ◽  
Paal Krokene ◽  
Melissa H. Mageroy

2012 ◽  
Vol 77 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Nadeem Yaqoob ◽  
Igor A. Yakovlev ◽  
Paal Krokene ◽  
Harald Kvaalen ◽  
Halvor Solheim ◽  
...  

2000 ◽  
Vol 36 (2) ◽  
pp. 181-186 ◽  
Author(s):  
L. I. Il’inskaya ◽  
G. I. Chalenko ◽  
E. A. Perekhod ◽  
N. G. Gerasimova ◽  
O. L. Ozeretskovskaya

Oecologia ◽  
2006 ◽  
Vol 148 (3) ◽  
pp. 426-436 ◽  
Author(s):  
Nadir Erbilgin ◽  
Paal Krokene ◽  
Erik Christiansen ◽  
Gazmend Zeneli ◽  
Jonathan Gershenzon

Sign in / Sign up

Export Citation Format

Share Document