scholarly journals Circadian rhythms in immunity and host‐parasite interactions

2021 ◽  
Author(s):  
Felicity K Hunter ◽  
Thomas D Butler ◽  
Julie E Gibbs
Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3490
Author(s):  
Carolina Romeiro Fernandes Chagas ◽  
Rasa Binkienė ◽  
Gediminas Valkiūnas

Avian blood parasites are remarkably diverse and frequently occur in co-infections, which predominate in wildlife. This makes wildlife pathogen research challenging, particularly if they belong to closely related groups, resulting in diagnostic problems and poor knowledge about such infections as well as the patterns of their co-occurrence and interactions. This is particularly true due to the periodicity (circadian rhythms) of parasitemia, which means that different parasitemia and parasite stages might be found throughout the day. We analysed blood samples from a Eurasian blackbird (Turdus merula) and a Song thrush (Turdus philomelos). This study aimed to describe a new avian Lankesterella species and molecularly characterize and redescribe Splendidofilaria mavis, a common avian filarioid nematode. Additionally, it was possible to investigate the circadian rhythms of the avian blood parasites belonging to Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma, which occurred in co-infection in the same avian host individuals. Different circadian rhythms were seen in different parasites, with Plasmodium sp. peaks occurring at midday, Leucocytozoon spp. peaks mainly during the evening and night, and Trypanosoma spp. and microfilariae peaks at midnight. No periodicity was seen in Haemoproteus and Lankesterella species infections. The time of parasitemia peaks most likely coincides with the time of vectors’ activity, and this should be beneficial for transmission. Knowledge about the circadian rhythms is needed for better understanding patterns in host-parasite interactions and disease transmission.


2011 ◽  
Vol 278 (1717) ◽  
pp. 2429-2436 ◽  
Author(s):  
Aidan J. O'Donnell ◽  
Petra Schneider ◽  
Harriet G. McWatters ◽  
Sarah E. Reece

Circadian biology assumes that biological rhythms maximize fitness by enabling organisms to coordinate with their environment. Despite circadian clocks being such a widespread phenomenon, demonstrating the fitness benefits of temporal coordination is challenging and such studies are rare. Here, we tested the consequences—for parasites—of being temporally mismatched to host circadian rhythms using the rodent malaria parasite, Plasmodium chabaudi . The cyclical nature of malaria infections is well known, as the cell cycles across parasite species last a multiple of approximately 24 h, but the evolutionary explanations for periodicity are poorly understood. We demonstrate that perturbation of parasite rhythms results in a twofold cost to the production of replicating and transmission stages. Thus, synchronization with host rhythms influences in-host survival and between-host transmission potential, revealing a role for circadian rhythms in the evolution of host–parasite interactions. More generally, our results provide a demonstration of the adaptive value of circadian rhythms and the utility of using an evolutionary framework to understand parasite traits.


2011 ◽  
Vol 41 (9) ◽  
pp. 925-933 ◽  
Author(s):  
James A. Cotton ◽  
Jennifer K. Beatty ◽  
Andre G. Buret

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Lúcio Lara Santos ◽  
Júlio Santos ◽  
Maria João Gouveia ◽  
Carina Bernardo ◽  
Carlos Lopes ◽  
...  

Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus (HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms on how the parasite infection can lead cancer and other associated pathologies. Here, we present a historical perspective of schistosomiasis, and review the infection-associated pathologies and studies on host–parasite interactions that unveil tentative mechanisms underlying schistosomiasis-associated carcinogenesis.


2021 ◽  
Vol 37 (5) ◽  
pp. 445-455
Author(s):  
Rogini Runghen ◽  
Robert Poulin ◽  
Clara Monlleó-Borrull ◽  
Cristina Llopis-Belenguer

2009 ◽  
Vol 11 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Kristle Krichbaum ◽  
Sarah Perkins ◽  
Michael R. Gannon

Sign in / Sign up

Export Citation Format

Share Document