Changes in soil properties and resistance to concentrated flow across a 25‐year passive restoration chronosequence of grasslands on the Chinese Loess Plateau

2019 ◽  
Vol 28 (1) ◽  
pp. 104-114
Author(s):  
Ming‐Ming Guo ◽  
Wen‐Long Wang ◽  
Hong‐Liang Kang ◽  
Bo Yang ◽  
Jian‐Ming Li
2021 ◽  
Author(s):  
Lijuan Jia ◽  
Zhen Wang ◽  
Lei Ji ◽  
Stefaan De Neve ◽  
C. Struik Paul ◽  
...  

Abstract Purpose Keystone taxa play an important role in soil nutrient cycling and crop growth and can be influenced by soil tillage. We investigated the composition of keystone taxa and their relationships with soil properties under different long-term tillage practices. Methods Four tillage treatments were applied (i.e., CT, conventional tillage; NT, no tillage with mulch; RT, reduced tillage; and SS, subsoiling with mulch), maintained for 21 years. Co-occurrence network (CoNet) was constructed to identify the keystone taxa, and redundancy analysis (RDA) was carried out to explore the relationships between keystone taxa and soil properties under four tillage practices at two growth stages (elongation and grain filling stages) of winter wheat. Results Compared with CT, RT had no significant effect on the microbial community and the keystone microbiome, while NT and SS remarkably altered the microbial community structure and the keystone microbiome at both crop stages. Massilia was the keystone genus under CT and RT, while Sphingomonas , Asanoa and Hoeflea were the keystone genera under NT and SS. RDA results showed that keystone genera were significantly correlated with soil organic carbon (SOC), dissolved organic carbon (DOC) and microbial biomass nitrogen (MBN) at both stages, but especially at the elongation stage. Our results further revealed that the effects of NT and SS on crop growth might be related to the changes in keystone microbiome. Conclusion Our study suggests that NT and SS were suitable conservation regimes and may contribute to the development of sustainable agricultural production in the Chinese Loess Plateau.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-wang Zhang ◽  
Kai-bo Wang ◽  
Jun Wang ◽  
Changhai Liu ◽  
Zhou-ping Shangguan

AbstractChanges in land use type can lead to variations in soil water characteristics. The objective of this study was to identify the responses of soil water holding capacity (SWHC) and soil water availability (SWA) to land use type (grassland, shrubland and forestland). The soil water characteristic curve describes the relationship between gravimetric water content and soil suction. We measured the soil water characteristic parameters representing SWHC and SWA, which we derived from soil water characteristic curves, in the 0–50 cm soil layer at sites representing three land use types in the Ziwuling forest region, located in the central part of the Loess Plateau, China. Our results showed that the SWHC was higher at the woodland site than the grassland and shrubland, and there was no significant difference between the latter two sites, the trend of SWA was similar to the SWHC. From grassland to woodland, the soil physical properties in the 0–50 cm soil layer partially improved, BD was significantly higher at the grassland site than at the shrubland and woodland sites, the clay and silt contents decreased significantly from grassland to shrubland to woodland and sand content showed the opposite pattern, the soil porosity was higher in the shrubland and woodland than that in the grassland, the soil physical properties across the 0–50 cm soil layer improved. Soil texture, porosity and bulk density were the key factors affecting SWHC and SWA. The results of this study provide insight into the effects of vegetation restoration on local hydrological resources and can inform soil water management and land use planning on the Chinese Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document