scholarly journals Two‐Stage Sulfide Mineral Assemblages in the Mineralized Ultramafic Rocks of the Laowangzhai Gold Deposit (Yunnan, SW China): Implications for Metallogenic Evolution

2019 ◽  
Vol 69 (3) ◽  
pp. 270-286 ◽  
Author(s):  
Huichao Zhang ◽  
Peng Chai ◽  
Hongrui Zhang ◽  
Zengqian Hou ◽  
Shouming Chen ◽  
...  
2021 ◽  
Author(s):  
benjamin bultel ◽  
Agata M. Krzesinska ◽  
Damien Loizeau ◽  
François Poulet ◽  
Håkon O. Astrheim ◽  
...  

<p>Serpentinization and carbonation have affected ultramafic rocks on Noachian Mars in several places called here serpentinization-carbonation systems (SCS). Among the most prominent SCS revealing mineral assemblages characteristic of serpentinization/carbonation is the Nili Fossae region [1]. Jezero crater – the target of the Mars 2020 rover –hosted a paleolake which constitutes a sink for sediments from Nili Fossae [1]. Thanks to the near infrared spectrometer onboard Mars2020 [2], the mission has the potential to offer ground truth measurement for other putative serpentinization/carbonation system documented on Mars. Several important aspects that may be addressed are: Do carbonates result from primary alteration of olivine-rich lithologies or are they derived by reprocessing of previous alteration minerals [3]? What is the composition? and nature of the protolith, which appear to be constituted of considerable amounts of olivine [4]? To reveal critical information regarding the conditions of serpentinization/carbonation, accessory minerals need detailed studies [1; 5]. In case of Jezero Crater, and serpentinization on Mars in general, the main alteration minerals are identified, but little is known about the accessory minerals.</p> <p>The Nili Fossae-Jezero system has potential analogues in terrestrial serpentinized and carbonated rocks, such as the Leka Ophiolite Complex, Norway (PTAL collection, https://www.ptal.eu). Here, distinct mineral assemblages record different stages of hydration and carbonation of ultramafic rocks [6].</p> <p>We perform petrological and mineralogical analyses on thin sections to characterize the major and trace minerals and combine with Near Infrared (NIR) spectroscopy measurements. A set of spectral parameters are defined and compare to spectral parameters previously used on CRISM and OMEGA data [1, 4, 7, 8]. We study the significance of the mineralogical assemblages including nature of accessory minerals. Effect of the presence of accessory minerals on the NIR signal is investigated and their potential incidence on the amount of H<sub>2</sub>/CH<sub>4</sub> production in mafic or ultramafic system is discussed [5].</p> <p>We started to apply the newly defined spectral parameters on several SCS on Mars. Results confirm local carbonation of earlier serpentinized rocks and suggest that different protoliths could have led to diversity of mineralogical associations in SCS on Mars. Multiple detection of brucite are also suggested for the first time on Mars. Altogether our results help to better describe key geochemical conditions of the SCS on Mars for habitability potential of the martian crust and Mars’s evolution.</p> <p><strong> </strong></p> <p>References:</p> <ul> <li>Brown, A. J., et al. <em>EPSL</em>1-2 (2010): 174-182.</li> <li>Wiens, R.C., et al.  <em>Space Sci Rev</em><strong>217, </strong>4 (2021).</li> <li>Horgan, B., et al. <em>Second International Mars Sample Return</em>. Vol. 2071. 2018.</li> <li>Ody, A., et al. <em>JGR: Planets</em>2 (2013): 234-262.</li> <li>Klein, F., et al. <em>Lithos</em>178 (2013): 55-69.</li> <li>Bjerga, A., et al. <em>Lithos</em>227 (2015): 21-36.</li> <li>Viviano-Beck et al, <em>JGR: Planets 11</em>8.9 (2013)</li> <li>Viviano-Beck et al, <em>JGR: Planets 119.6</em> (2014)</li> </ul>


2015 ◽  
Vol 65 ◽  
pp. 42-54 ◽  
Author(s):  
Jun Deng ◽  
Qingfei Wang ◽  
Gongjian Li ◽  
Yan Zhao

1994 ◽  
Vol 58 (390) ◽  
pp. 1-20 ◽  
Author(s):  
G. T. R. Droop

AbstractThe triple-chain pyriboles jimthompsonite, clinojimthompsonite, and probably chesterite and its monoclinic polytype occur in Lewisian amphibolite-facies ultramafic rocks near Achmelvich, N.W. Scotland. These minerals are intergrown with one another and with amphiboles in prismatic porphyroblasts up to 3 cm long, which are associated with chlorite, carbonate, magnetite and, in some cases, talc. Rocks containing triple-chain silicates have been found at three localities, in each case outcropping in a layer < 1.5 m thick. Clinojimthompsonite is the most abundant triple-chain silicate and generally forms euhedral wedge-shaped overgrowths, measuring up to 1 mm in the b-axis direction, on the {010} faces of actinolite cores. The mineral assemblages are probably of Inverian age.The identification of the triple-chain phases is based mainly on cleavage angle, extinction angle, backscattered electron intensity and, in the case of clinojimthompsonite, on X-ray diffraction data. Microprobe analyses support the identifications. The triple-chain silicates have compositions lying in the system MgO-FeO-SiO2-H2O, with only trace amounts of other components.The cell dimensions of the coarsest clinojimthompsonite are: a = 9.862 ± 0.002 Å, b = 27.184 ± 0.020 Å, c = 5.298 ± 0.004 Å, β = 109.61° ± 0.14° V = 1337.9 ± 1.8 Å3, and its optical properties are as follows: α = 1.600 β = 1.619 γ = 1.628 (all ± 0.001) and optic axial plane = (010). The 2Vα of clinojimthompsonite = 67 ±2°.Back-scattered electron microscopy reveals that although substantial volumes of single-phase clinojimthompsonite are common, (010) intergrowths of Mg,Fe-amphiboles, jimthompsonite polytypes and chesterite polytypes occur locally on scales down to 0.1 µm and probably smaller, indicating considerable chain-width disorder.The triple-chain pyriboles are not pseudomorphous after amphibole and probably grew during prograde Inverian metamorphism. Chemographic constraints suggest that they could have formed from forsterite-bearing assemblages, possibly as the result of infiltration of CO2-rich fluid. Thermodynamic calculations for associated high-variance ultramafic rocks place an upper limit of c. 600–700°C on the temperature of metamorphism.The large number of chemically similar pyriboles and their disposition within compound prisms suggests that crystallization was kinetically controlled. A simple ‘template’ model is propesed to explain the observed patterns, in which the identity of the Mg,Fe-pyribole nucleating at any point on a preexisting actinolite or Mg,Fe-pyribole substrate is controlled by silicate-chain width and/or symmetry (ortho vs. clino), depending on the orientation of the substrate crystal face.


2017 ◽  
Vol 52 (8) ◽  
pp. 1179-1190 ◽  
Author(s):  
Qiaohui Pi ◽  
Ruizhong Hu ◽  
Bin Xiong ◽  
Qiuli Li ◽  
Richen Zhong

1999 ◽  
Vol 36 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Wayne G Powell ◽  
David RM Pattison ◽  
Paul Johnston

Textural relations between Al2SiO5 phases, and deformation fabrics, provide constraints on the metamorphic history of the Hemlo gold deposit. Kyanite in the deposit is most common within and on the margins of boudinaged quartz ± realgar veins, and less commonly as rotated porphyroblasts within the matrix of schistose rocks. Kyanite predates the main (D2) schistosity. Sillimanite postdates kyanite, occurring irregularly as discrete knots and foliae that run parallel to, but sometimes cut across, the principal (D2) foliation, indicating that sillimanite postdates the D2 foliation. We regard kyanite to be part of the peak metamorphic assemblage, with sillimanite representing a partial later overprint most likely related to fluid infiltration. Rare andalusite occurs in two associations: as late-stage, clean, idioblastic crystals; and as large, fractured grains, locally overprinted by sillimanite, in boudinaged quartz-realgar veins. We suggest two possible origins for this second form of andalusite, one involving generally late growth, the second involving early growth prior to the development of peak metamorphic kyanite. Although not unambiguous, we prefer the second scenario. P-T conditions from petrogenetic grid constraints, and new geothermobarometric estimates, indicate 6-7 GPa, 600-650°C for the peak kyanite grade metamorphism (ca. 2677 Ma?), and 4-5 GPa, 600°C for the later sillimanite overprint (ca. 2672 Ma?). We see these two events as part of an evolving P-T path in a single metamorphic event. In our early andalusite scenario, the andalusite may have formed from pyrophyllite breakdown at 2-4 GPa, 450°C, possibly associated with emplacement of the regional suite of granodiorite plutons (ca. 2686 Ma). Late andalusite formed sporadically on the retrograde path. The occurrence of deformed andalusite and aligned kyanite in and on the margins of boudinaged auriferous realgar-stibnite-quartz veins provides evidence in support of a premetamorphic mineralization event.


Sign in / Sign up

Export Citation Format

Share Document