scholarly journals Inference about complex relationships using peak height data from DNA mixtures

Author(s):  
Peter J. Green ◽  
Julia Mortera
2021 ◽  
Vol 1 (1) ◽  
pp. 33-45
Author(s):  
Dennis McNevin ◽  
Kirsty Wright ◽  
Mark Barash ◽  
Sara Gomes ◽  
Allan Jamieson ◽  
...  

Continuous probabilistic genotyping (PG) systems are becoming the default method for calculating likelihood ratios (LRs) for competing propositions about DNA mixtures. Calculation of the LR relies on numerical methods and simultaneous probabilistic simulations of multiple variables rather than on analytical solutions alone. Some also require modelling of individual laboratory processes that give rise to electropherogram artefacts and peak height variance. For these reasons, it has been argued that any LR produced by continuous PG is unique and cannot be compared with another. We challenge this assumption and demonstrate that there are a set of conditions defining specific DNA mixtures which can produce an aspirational LR and thereby provide a measure of reproducibility for DNA profiling systems incorporating PG. Such DNA mixtures could serve as the basis for inter-laboratory comparisons, even when different STR amplification kits are employed. We propose a procedure for an inter-laboratory comparison consistent with these conditions.


Author(s):  
A. Caglià ◽  
L. Baldassarri ◽  
I. Boschi ◽  
F. Scarnicci ◽  
V.L. Pascali

2008 ◽  
Vol 0 (0) ◽  
pp. 080310190901533-??? ◽  
Author(s):  
R. WHITLOCK ◽  
H. HIPPERSON ◽  
M. MANNARELLI ◽  
R. K. BUTLIN ◽  
T. BURKE

2008 ◽  
Vol 8 (4) ◽  
pp. 725-735 ◽  
Author(s):  
R. WHITLOCK ◽  
H. HIPPERSON ◽  
M. MANNARELLI ◽  
R. K. BUTLIN ◽  
T. BURKE

Talanta ◽  
1989 ◽  
Vol 36 (4) ◽  
pp. 473-478 ◽  
Author(s):  
P RICE ◽  
Y SHAO ◽  
S ERSKINE ◽  
T TEAGUE ◽  
D BOBBITT

2020 ◽  
Vol 12 (3) ◽  
pp. 403 ◽  
Author(s):  
Luyao Qin ◽  
Yaodeng Chen ◽  
Tianlei Yu ◽  
Gang Ma ◽  
Yang Guo ◽  
...  

To make better use of microwave radiance observations for data assimilation, removal of radiances contaminated by hydrometeor particles is one of the most important steps. Generally, all observations below the middle troposphere are eliminated before the analysis when precipitation is present. However, the altitude of the cloud top varies; when the weighting function peak height of a channel is higher than the altitude of the cloud top, observations are not affected by the absorption or scattering of cloud particles. Thus, the radiative transfer calculation can be performed under a clear sky scenario. In this paper, a dynamic channel selection (DCS) method was developed to determine the radiance observations unaffected by clouds under cloudy conditions in assimilation. First, the sensitivity of cloud liquid water (CLW) profiles to radiance from the microwave temperature sounding frequencies was analyzed. It was found that the impact of CLW on transmittance can be neglected where the cloud top height is below the weighting function peak height. Second, three lookup tables were devised through analysis of the impact of cloud fraction and cloud top height on radiance, which is the basis of the DCS method. The unified cloud top height of the Microwave Temperature Sounder (MWTS)-2 fields of view (FOVs) can be calculated by remapping the cloud mask and cloud top height data from the Medium Resolution Spectral Imager-2 (MERSI-2). Observations from various channels may be removed or retained based on real-time dynamic unified cloud top height data. Twelve-hour and long-term time-series brightness temperature simulation experiments both showed that an increase in the amount of observations used for data assimilation of more than 300% can be achieved by application of DCS, but this had no effect on the amount of error. Through DCS, areas of strong precipitation can be accurately identified and removed, and more observations above cloud top height can be included in the data assimilation. The application of DCS to data assimilation will greatly improve the data utilization rate, and therefore allow for more accurate characterization of upper atmospheric circulation.


Author(s):  
A. C. Enders

The alteration in membrane relationships seen at implantation include 1) interaction between cytotrophoblast cells to form syncytial trophoblast and addition to the syncytium by subsequent fusion of cytotrophoblast cells, 2) formation of a wide variety of functional complex relationships by trophoblast with uterine epithelial cells in the process of invasion of the endometrium, and 3) in the case of the rabbit, fusion of some uterine epithelial cells with the trophoblast.Formation of syncytium is apparently a membrane fusion phenomenon in which rapid confluence of cytoplasm often results in isolation of residual membrane within masses of syncytial trophoblast. Often the last areas of membrane to disappear are those including a desmosome where the cell membranes are apparently held apart from fusion.


Author(s):  
A. Howie ◽  
D.W. McComb

The bulk loss function Im(-l/ε (ω)), a well established tool for the interpretation of valence loss spectra, is being progressively adapted to the wide variety of inhomogeneous samples of interest to the electron microscopist. Proportionality between n, the local valence electron density, and ε-1 (Sellmeyer's equation) has sometimes been assumed but may not be valid even in homogeneous samples. Figs. 1 and 2 show the experimentally measured bulk loss functions for three pure silicates of different specific gravity ρ - quartz (ρ = 2.66), coesite (ρ = 2.93) and a zeolite (ρ = 1.79). Clearly, despite the substantial differences in density, the shift of the prominent loss peak is very small and far less than that predicted by scaling e for quartz with Sellmeyer's equation or even the somewhat smaller shift given by the Clausius-Mossotti (CM) relation which assumes proportionality between n (or ρ in this case) and (ε - 1)/(ε + 2). Both theories overestimate the rise in the peak height for coesite and underestimate the increase at high energies.


Sign in / Sign up

Export Citation Format

Share Document