Effect of heating on some soil properties and potassium dynamics in calcareous soils of southern Iran

2020 ◽  
Author(s):  
Mahdi Najafi‐Ghiri ◽  
Hamid Reza Boostani
2011 ◽  
Vol 25 (4) ◽  
pp. 313-327 ◽  
Author(s):  
Mahdi Najafi Ghiri ◽  
Ali Abtahi ◽  
Hamidreza Owliaie ◽  
Soheila Sadat Hashemi ◽  
Hadi Koohkan

2006 ◽  
Vol 55 (1) ◽  
pp. 117-126 ◽  
Author(s):  
György Füleky

The new hot water percolation (HWP) method was introduced to determine the phosphorus supply of soils from the Soil Bank of 36 Hungarian soils. The present work aimed to explain the availability of phosphorus by determining the inorganic phosphate fractions and using ryegrass test plants. Four inorganic phosphate fractions were distinguished: Fraction I, the sorbed phosphates; Fraction II, the easily soluble Ca phosphates and the Al bound phosphates; Fraction III, the Fe phosphates; and Fraction IV, the hardly soluble Ca phosphates. Fraction II, in which the easily soluble Ca phosphates and Al phosphates accumulate, was the main phosphorus source for the test plants on both calcareous and non-calcareous soils. Fraction III (the iron phosphates) plays a greater role in non-calcareous soils, while Fraction IV (the hardly soluble Ca phosphates) in calcareous soils. Both fractions are closely connected with soil development, and with soil properties such as pH and CaCO 3 content. The hot water percolation method reflects the phosphorus supply of soil as well as that measured with ryegrass plants and with the AL method. This new HWP method is in good correlation with the main source of phosphate, with fraction II. For routine purposes the first collected HWP fraction can possibly be used to determine the phosphorus supply of soil correlating well with the phosphorus uptake of test plants.


2009 ◽  
Vol 6 (3) ◽  
pp. 245 ◽  
Author(s):  
Achouak El Arfaoui ◽  
Stéphanie Sayen ◽  
Eric Marceau ◽  
Lorenzo Stievano ◽  
Emmanuel Guillon ◽  
...  

Environmental context. The wide use of pesticides for pest and weed control contributes to their presence in underground and surface waters, which has led to a continuously growing interest in their environmental fate. Soils play a key role in the transfer of these compounds from the sprayer to the water as a result of their capacity to retain pesticides depending on the soil components. The knowledge of soil composition should enable one to predict pesticide behaviour in the environment. Abstract. Eight calcareous soils of Champagne vineyards (France) were studied to investigate the adsorption of the herbicide terbumeton (TER). A preliminary characterisation of the soil samples using X-ray diffraction (XRD), elemental and textural analyses, revealed a wide range of soil properties for the selected samples. The adsorption isotherms of TER were plotted for all samples. The determination of soil properties, which significantly correlated with the Kd distribution coefficient, allowed identification of organic matter and CaCO3 as the two main soil components that govern the retention of the herbicide. Organic matter was the predominant phase involved in the retention but its role was limited by the presence of calcite. Finally, the ratio of CaCO3 content to organic matter content was proposed as a useful parameter to predict the adsorption of terbumeton in chalky soils. The evolution of Kd as a function of this ratio was successfully described using an empirical model.


Geoderma ◽  
2006 ◽  
Vol 132 (1-2) ◽  
pp. 31-46 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
G. Stoops

Soil Research ◽  
2011 ◽  
Vol 49 (6) ◽  
pp. 529 ◽  
Author(s):  
Mahdi Najafi Ghiri ◽  
Ali Abtahi ◽  
Fatemeh Jaberian

Experiments were conducted on 48 representative surface and subsurface soils collected from different climatic and physiographic conditions in southern Iran to assess factors affecting potassium (K) release and to find the best fitting models to describe the release kinetics of K to 0.01 m CaCl2. Mineralogical analysis showed that smectite, mica, chlorite, and palygorskite were the main clay minerals in the studied soils, whereas quartz, mica, and feldspars were abundant in the silt and sand fractions. Results indicated that cumulative K released ranged from 26.7 to 260 mg/kg (mean 176 mg/kg) for surface soils and from 37.9 to 198 mg/kg (mean 130 mg/kg) for subsurface soils. The predominant source of K in the soils appeared to be mica, because there was a significant relationship between cumulative K released and mica content. The percentage of non-exchangeable K release to CaCl2 during 1496 h was also correlated with the ratio of mica in the coarse fractions to total mica in the whole soil. Results showed that the Elovich equation adequately described the reaction rates of K release from surface and subsurface soils and suggested a heterogeneous diffusion process. We concluded that mica content and its particle size, soil depth, and some soil properties are the main factors controlling K release rate. On the other hand, we found no significant relationships between K release rate and climatic conditions, or physiographic positions.


2018 ◽  
Vol 22 (1) ◽  
pp. 127-142
Author(s):  
M. Hosseini ◽  
E. Adhami ◽  
H. R Owliaie ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document