Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors

2015 ◽  
Vol 82 (1) ◽  
pp. 105-121 ◽  
Author(s):  
Hui Zhou ◽  
Kui Lin-Wang ◽  
Huiliang Wang ◽  
Chao Gu ◽  
Andrew P. Dare ◽  
...  
Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jifang Zhang ◽  
Jian Zhao ◽  
Qunyun Tan ◽  
Xiaojun Qiu ◽  
Shiyong Mei

AbstractRadish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.


2017 ◽  
Vol 225 ◽  
pp. 310-316 ◽  
Author(s):  
Huiling Zhang ◽  
Bo Yang ◽  
Jun Liu ◽  
Dalong Guo ◽  
Juan Hou ◽  
...  

Science ◽  
2014 ◽  
Vol 343 (6178) ◽  
pp. 1505-1508 ◽  
Author(s):  
B. Xu ◽  
M. Ohtani ◽  
M. Yamaguchi ◽  
K. Toyooka ◽  
M. Wakazaki ◽  
...  

2020 ◽  
Vol 151 ◽  
pp. 271-283 ◽  
Author(s):  
Chengyan Deng ◽  
Jiaying Wang ◽  
Chenfei Lu ◽  
Yanfei Li ◽  
Deyuan Kong ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Iny Elizebeth Mathew ◽  
Sweta Das ◽  
Arunima Mahto ◽  
Pinky Agarwal

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Mudassar Ahmad ◽  
Xinhui Yan ◽  
Jianzhao Li ◽  
Qinsong Yang ◽  
Wajeeha Jamil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document