scholarly journals Analysis of structural genes and key transcription factors related to anthocyanin biosynthesis in potato tubers

2017 ◽  
Vol 225 ◽  
pp. 310-316 ◽  
Author(s):  
Huiling Zhang ◽  
Bo Yang ◽  
Jun Liu ◽  
Dalong Guo ◽  
Juan Hou ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jifang Zhang ◽  
Jian Zhao ◽  
Qunyun Tan ◽  
Xiaojun Qiu ◽  
Shiyong Mei

AbstractRadish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 932 ◽  
Author(s):  
Dong Cao ◽  
Jiequn Fan ◽  
Xingyuan Xi ◽  
Yuan Zong ◽  
Dongxia Wang ◽  
...  

Red coleoptiles can help crops to cope with adversity and the key genes that are responsible for this trait have previously been isolated from Triticum aestivum, Triticum urartu, and Aegilops tauschii. This report describes the use of transcriptome analysis to determine the candidate gene that controls the trait for white coleoptiles in T. monococcum by screening three cultivars with white coleoptiles and two with red coleoptiles. Fifteen structural genes and two transcription factors that are involved in anthocyanin biosynthesis were identified from the assembled UniGene database through BLAST analysis and their transcript levels were then compared in white and red coleoptiles. The majority of the structural genes reflected lower transcript levels in the white than in the red coleoptiles, which implied that transcription factors related to anthocyanin biosynthesis could be candidate genes. The transcript levels of MYC transcription factor TmMYC-A1 were not significantly different between the white and red coleoptiles and all of the TmMYC-A1s contained complete functional domains. The deduced amino acid sequence of the MYB transcription factor TmMYB-A1 in red coleoptiles was homologous to TuMYB-A1, TaMYB-A1, TaMYB-B1, and TaMYB-D1, which control coleoptile color in corresponding species and contained the complete R2R3 MYB domain and the transactivation domain. TmMYB-a1 lost its two functional domains in white coleoptiles due to a single nucleotide deletion that caused premature termination at 13 bp after the initiation codon. Therefore, TmMYB-A1 is likely to be the candidate gene for the control of the red coleoptile trait, and its loss-of-function mutation leads to the white phenotype in T. monococcum.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 445 ◽  
Author(s):  
Xingyuan Xi ◽  
Yuan Zong ◽  
Shiming Li ◽  
Dong Cao ◽  
Xuemei Sun ◽  
...  

The red flesh trait gives red pitayas more healthful components and a higher price, while the genetic mechanism behind this trait is unknown. In this manuscript, transcriptome analysis was employed to discover the genetic differences between white and red flesh in pitayas. A total of 27.99 Gb clean data were obtained for four samples. Unigenes, 79,049 in number, were generated with an average length of 1333 bp, and 52,618 Unigenes were annotated. Compared with white flesh, the expression of 10,215 Unigenes was up-regulated, and 4853 Unigenes were down-regulated in red flesh. The metabolic pathways accounted for 64.6% of all differentially expressed Unigenes in KEGG pathways. The group with high betalain content in red flesh and all structural genes, related to betalain biosynthesis, had a higher expression in red flesh than white flesh. The expression of the key gene, tyrosine hydroxylase CYP76AD1, was up-regulated 245.08 times, while 4,5-DOPA dioxygenase DODA was up-regulated 6.46 times. Moreover, the special isomers CYP76AD1α and DODAα were only expressed in red flesh. The competitive anthocyanin biosynthesis pathway had a lower expression in red flesh. Two MYB transcription factors were of the same branch as BvMYB1, regulating betalain biosynthesis in beet, and those transcription factors had expression differences in two kinds of pitayas, which indicated that they should be candidate genes controlling betalain accumulation in red pitayas. This research would benefit from identifying the major gene controlling red flesh trait and breed new cultivars with the red flesh trait. Future research should aim to prove the role of each candidate gene in betalain biosynthesis in red pitayas.


2019 ◽  
Vol 46 (2) ◽  
pp. 187 ◽  
Author(s):  
Yicheng Wang ◽  
Jingjing Sun ◽  
Nan Wang ◽  
Haifeng Xu ◽  
Changzhi Qu ◽  
...  

Anthocyanin biosynthesis is induced by cytokinins, and is regulated by MYB transcription factors. However, the underlying molecular mechanisms have not been fully characterised. In the present study, red-fleshed apple callus were induced from the leaves of an R6/R6 homozygous line, which was the hybrid offspring of Malus sieversii f. niedzwetzkyana and ‘Fuji’. We analysed the callus anthocyanin contents in response to different cytokinin concentrations. We observed that cytokinin treatments upregulated the expression of anthocyanin structural genes MdDFR and MdUFGT and transcription factor genes MdMYB10 and MdbHLH3. Additionally, the expression of MdMYBL2, which encodes the bHLH and EAR motifs, was inhibited by cytokinin treatments. The MdMYBL2-overexpressing callus had lower anthocyanin contents than the wild-type controls. We noted that the expression levels of anthocyanin biosynthesis structural genes MdDFR and MdUFGT and transcription factor genes MdMYB10 and MdbHLH3 were strongly suppressed in the transgenic callus. Subsequent yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MdMYBL2 interacts with MdbHLH3, which may influence the expression of anthocyanin biosynthesis-related genes. Our findings may provide new insights into how MYB transcription factors influence the cytokinin-regulated anthocyanin biosynthesis in red-fleshed apples.


2019 ◽  
Author(s):  
Yuan Zong ◽  
Shiming Li ◽  
Xingyuan Xi ◽  
Dong Cao ◽  
Zhong Wang ◽  
...  

Abstract Background Overexpression of MYB transcription factors can induce the expression of structural genes for anthocyanin biosynthesis and increase the anthocyanin content of plant tissues. However, it remains unclear whether MYB transcription factor overexpression effects the activation of other genes and the concomitant accumulation of chemical compounds. Results Overexpression of LrAN2 promoted anthocyanin accumulation in a variety of tissues in tobacco cultivar Samsun. Only 185 unigenes, from total of 160,965, were expressed differently in leaves and 241 chemical compounds exhibited differences in accumulation. Four anthocyanins, including apigeninidin chloride, cyanidin 3-O-malonylhexoside, pelargonidin 3-O-beta-D-glucoside, and cyanidin 3,5-O-diglucoside were detected only in transgenic lines, which could explain the purple leaf phenotype. Beside anthocyanins, the phenylpropanoids, polyphenols (catechins), flavonoids, flavones, and flavonols were also upregulated. Overexpression of LrAN2 activated the basic helix-loop-helix transcription factor AN1b, and the MYB transcription factor MYB3. Additionally, structural genes associated with the phenylpropanoid biosynthetic pathway were activated, which lead to the upregulated accumulation of phenylpropanoid, polyphenol (catechin), flavonoid, flavone, flavonol, and anthocyanin. The MYB transcription factor CPC, a negative regulator of anthocyanin biosynthesis, was also expressed at increased levels in transgenic lines, which implie that a negative regulation mechanism existed in the anthocyanin biosynthesis pathway. The relative contents of all 19 differently accumulated amino groups and derivatives were decreased in transgenic lines, which meant that the phenylalanine biosynthesis pathway used other amino acids as substrates. Interestingly, the expression of acetylalkylglycerol acetylhydrolase was suppressed in transgenic lines, which caused the accumulation of 19 lyso-phosphatidylcholine derivatives and a decrease in production of eight octodecane derivatives. Conclusions Overexpression of LrAN2 activates the pathway of anthocyanin synthesis and metabolism in tobacco. Four anthocyanins lead to the purple leaf phenotype The main pathways of flavonoid biosynthesis were up-regulated. This research provides more information about the function of MYB transcription factors in anthocyanin biosynthesis and the production of other chemical compounds. This work will help breeders to obtain new plant cultivars with high anthocyanin contents using biotechnology.


2020 ◽  
Vol 151 ◽  
pp. 271-283 ◽  
Author(s):  
Chengyan Deng ◽  
Jiaying Wang ◽  
Chenfei Lu ◽  
Yanfei Li ◽  
Deyuan Kong ◽  
...  

2021 ◽  
Author(s):  
Shikai Zhang ◽  
Wang Zhan ◽  
Anran Sun ◽  
Ying Xie ◽  
Zhiming Han ◽  
...  

Abstract The red color formation of Acer mandshuricum leaves is caused by the accumulation of anthocyanins primarily, but the molecular mechanism researches which underlie anthocyanin biosynthesis in A. mandshuricum were still lacking. Therefore, we combined the transcriptome and metabolome and analyzed the regulatory mechanism and accumulation pattern of anthocyanins in leaf color change periods in three different leaf color states. In our results, 26 anthocyanins were identified. Notably, the metabolite cyanidin 3-O-glucoside was found that significantly correlated with the color formation, was the predominant metabolite in anthocyanin biosynthesis of A. mandshuricum. By the way, two key structural genes ANS (Cluster-20561.86285) and BZ1 (Cluster-20561.99238) in anthocyanidin biosynthesis pathway were significantly up-regulated in RL, suggesting that they might enhance accumulation of cyanidin 3-O-glucoside which is their downstream metabolite, and contributed the red formation of A. mandshuricum leaves. Additionally, most TFs (e.g., MYBs, bZIPs and bHLHs) were detected differentially expressed in three leaf color stages that could participate in anthocyanin accumulation. This study sheds light on the anthocyanin molecular regulation of anthocyanidin bio-synthesis and accumulation underlying the different leaf color change periods in A. mandshuricum, and it could provide basic theory and new insight for the leaf color related genetic improvement of A. mandshuricum.


Sign in / Sign up

Export Citation Format

Share Document