scholarly journals In vivo lipid ‘tag and track’ approach shows acyl editing of plastid lipids and chloroplast import of phosphatidylglycerol precursors in Arabidopsis thaliana

2018 ◽  
Vol 95 (6) ◽  
pp. 1129-1139 ◽  
Author(s):  
Anna K. Hurlock ◽  
Kun Wang ◽  
Tomomi Takeuchi ◽  
Patrick J. Horn ◽  
Christoph Benning
Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5859
Author(s):  
Qingting Liu ◽  
Yuan Zhou ◽  
Joerg Fettke

Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 86
Author(s):  
Vladimir Oslovsky ◽  
Ekaterina Savelieva ◽  
Mikhail Drenichev ◽  
Georgy Romanov ◽  
Sergey Mikhailov

The biosynthesis of aromatic cytokinins in planta, unlike isoprenoid cytokinins, is still unknown. To compare the final steps of biosynthesis pathways of aromatic and isoprenoid cytokinins, we synthesized a series of nucleoside derivatives of natural cytokinins starting from acyl-protected ribofuranosyl-, 2′-deoxyribofuranosyl- and 5′-deoxyribofuranosyladenine derivatives using stereoselective alkylation with further deblocking. Their cytokinin activity was determined in two bioassays based on model plants Arabidopsis thaliana and Amaranthus caudatus. Unlike active cytokinins-bases, cytokinin nucleosides lack the hormonal activity until the ribose moiety is removed. According to our experiments, ribo-, 2′-deoxyribo- and 5′-deoxyribo-derivatives of isoprenoid cytokinin N6-isopentenyladenine turned in planta into active cytokinins with clear hormonal activity. As for aromatic cytokinins, both 2′-deoxyribo- and 5′-deoxyribo-derivatives did not exhibit analogous activity in Arabidopsis. The 5′-deoxyribo-derivatives cannot be phosphorylated enzymatically in vivo; therefore, they cannot be “activated” by the direct LOG-mediated cleavage, largely occurring with cytokinin ribonucleotides in plant cells. The contrasting effects exerted by deoxyribonucleosides of isoprenoid (true hormonal activity) and aromatic (almost no activity) cytokinins indicates a significant difference in the biosynthesis of these compounds.


2019 ◽  
Vol 20 (3) ◽  
pp. 708 ◽  
Author(s):  
Roberto Mattioli ◽  
Antonio Francioso ◽  
Maria d’Erme ◽  
Maurizio Trovato ◽  
Patrizia Mancini ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aβ) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aβ. BV2 murine microglia cells treated with both Aβ25–35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1β, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aβ only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aβ-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aβ1–42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


2011 ◽  
Vol 4 (2) ◽  
pp. 252-263 ◽  
Author(s):  
Sibylle Infanger ◽  
Sylvain Bischof ◽  
Andreas Hiltbrunner ◽  
Birgit Agne ◽  
Sacha Baginsky ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Beatrice Giuntoli ◽  
Francesco Licausi ◽  
Hans van Veen ◽  
Pierdomenico Perata
Keyword(s):  

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4556 ◽  
Author(s):  
Diana Kopcsayová ◽  
Eva Vranová

Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.


Sign in / Sign up

Export Citation Format

Share Document