Роль генов кальций-зависимых протеинкиназ VaCPK1 и VaCPK26 в ответе Vitis amurensis ( in vitro ) и Arabidopsis thaliana ( in vivo ) на воздействие абиотических стрессов

2019 ◽  
Vol 55 (3) ◽  
pp. 300-311
Author(s):  
А. С. Дубровина ◽  
К. В. Киселев
Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4556 ◽  
Author(s):  
Diana Kopcsayová ◽  
Eva Vranová

Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.


1998 ◽  
Vol 11 (11) ◽  
pp. 1136-1141 ◽  
Author(s):  
Jaesung Nam ◽  
Kirankumar S. Mysore ◽  
Stanton B. Gelvin

The Arabidopsis thaliana mutants uvh1 and rad5, originally identified as radiation hypersensitive, were reported to be deficient in T-DNA integration based on the relative efficiencies of stable transformation and T-DNA transfer. We reassessed these mutants for susceptibility to transformation by Agrobacterium tumefaciens. The mutant rad5 showed a significant reduction in the efficiency of transient as well as stable transformation, compared with its wild-type progenitor. These data indicate that rad5 is blocked at a step in the transformation process prior to T-DNA integration. We additionally found, using both an in vitro root inoculation and an in vivo flower bolt inoculation assay, that the mutant uvh1 is as susceptible to A. tumefaciens-mediated transformation as is its wild-type progenitor, C10.


2013 ◽  
Vol 79 (15) ◽  
pp. 4727-4733 ◽  
Author(s):  
Kathrin Emmi Scholz ◽  
Benita Kopka ◽  
Astrid Wirtz ◽  
Martina Pohl ◽  
Karl-Erich Jaeger ◽  
...  

ABSTRACTHydroxynitrile lyase fromArabidopsis thaliana(AtHNL) was fused to different fluorescent reporter proteins. Whereas all fusion constructs retained enzymatic activity and fluorescencein vivoandin vitro, significant differences in activity and pH stability were observed. In particular, flavin-based fluorescent reporter (FbFP) fusions showed almost 2 orders of magnitude-increased half-lives in the weakly acidic pH range compared to findings for the wild-type enzyme. Analysis of the quaternary structure of the respective FbFP-AtHNL fusion proteins suggested that this increased stability is apparently caused by oligomerization mediated via the FbFP tag. Moreover, the increased stability of the fusion proteins enabled the efficient synthesis of (R)-mandelonitrile in an aqueous-organic two-phase system at a pH of <5. Remarkably, (R)-mandelonitrile synthesis is not possible using wild-typeAtHNL under the same conditions due to the inherent instability of this enzyme below pH 5. The fusion strategy presented here reveals a surprising means for the stabilization of enzymes and stresses the importance of a thoroughin vitrocharacterization ofin vivo-employed fluorescent fusion proteins.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Pranav R. Prabhu ◽  
André O. Hudson

The aminotransferase gene family in the model plantArabidopsis thalianaconsists of 44 genes. Twenty six of these enzymes are classified as characterized meaning that the reaction(s) that the enzyme catalyzes are documented using experimental means. The remaining 18 enzymes are uncharacterized and are therefore deemed putative. Our laboratory is interested in elucidating the function(s) of the remaining putative aminotransferase enzymes. To this end, we have identified and partially characterized an aminotransferase (TAT) enzyme from Arabidopsis annotated by the locus tag At5g36160. The full-length cDNA was cloned and the purified recombinant enzyme was characterized usingin vitroandin vivoexperiments.In vitroanalysis showed that the enzyme is capable of interconverting L-Tyrosine and 4-hydroxyphenylpyruvate, and L-Phenylalanine and phenylpyruvate.In vivoanalysis by functional complementation showed that the gene was able to complement anE. coliwith a background of aminotransferase mutations that confers auxotrophy for L-Tyrosine and L-Phenylalanine.


2021 ◽  
Vol 12 (3) ◽  
pp. 2852-2861

A variety of simple DNA repeats are enriched in the eukaryotic genomes. Recent studies have proven their importance in understanding genome organization and function, especially how genomes evolve using them as mutational hotspots during DNA replication. Mirror repeat sequences, the most underrated subset of this class of repeats, are now gaining importance because of their probable involvement in developing several genetic diseases in humans. These repeats typically adopt H-DNA conformations in both in-vitro and in-vivo conditions. On the other end, plants were still not analyzed for their presence or distribution and whether they are responsible for causing diseases in them or not. The present study aims to extract mirror repeats in the flowering genes of Arabidopsis thaliana. To this end, we have deployed FPCB (FASTA-PARALLEL COMPLEMENT-BLAST), an efficacious and quick method to extract perfect and degenerate mirror repeat sequences through pattern matching of alignments with user-defined algorithmic parameters. All the analyzed genes were reported to have quite high densities of mirror sequences. A total of 93 unique mirror repeats of significant lengths were extracted in the analyzed genes.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zhonghui Zhang ◽  
Fuqu Hu ◽  
Min Woo Sung ◽  
Chang Shu ◽  
Claudia Castillo-González ◽  
...  

RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.


Sign in / Sign up

Export Citation Format

Share Document