prenyl diphosphate
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 1)

H-INDEX

16
(FIVE YEARS 1)

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4556 ◽  
Author(s):  
Diana Kopcsayová ◽  
Eva Vranová

Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.


2016 ◽  
Vol 113 (43) ◽  
pp. 12328-12333 ◽  
Author(s):  
Qidong Jia ◽  
Guanglin Li ◽  
Tobias G. Köllner ◽  
Jianyu Fu ◽  
Xinlu Chen ◽  
...  

The vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii. The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like (MTPSL) genes in other plants. By analyzing the transcriptomes of 1,103 plant species ranging from green algae to flowering plants, putative MTPSL genes were identified predominantly from nonseed plants, including liverworts, mosses, hornworts, lycophytes, and monilophytes. Directed searching for MTPSL genes in the sequenced genomes of a wide range of seed plants confirmed their general absence in this group. Among themselves, MTPSL proteins from nonseed plants form four major groups, with two of these more closely related to bacterial TPSs and the other two to fungal TPSs. Two of the four groups contain a canonical aspartate-rich “DDxxD” motif. The third group has a “DDxxxD” motif, and the fourth group has only the first two “DD” conserved in this motif. Upon heterologous expression, representative members from each of the four groups displayed diverse catalytic functions as monoterpene and sesquiterpene synthases, suggesting these are important for terpene formation in nonseed plants.


2013 ◽  
Vol 91 ◽  
pp. 140-147 ◽  
Author(s):  
Natsajee Nualkaew ◽  
Nils Guennewich ◽  
Karin Springob ◽  
Anuwatchakit Klamrak ◽  
Wanchai De-Eknamkul ◽  
...  

2013 ◽  
Vol 449 (3) ◽  
pp. 729-740 ◽  
Author(s):  
Matthew O. Jones ◽  
Laura Perez-Fons ◽  
Francesca P. Robertson ◽  
Peter M. Bramley ◽  
Paul D. Fraser

The electron transfer molecules plastoquinone and ubiquinone are formed by the condensation of aromatic head groups with long-chain prenyl diphosphates. In the present paper we report the cloning and characterization of two genes from tomato (Solanum lycopersicum) responsible for the production of solanesyl and decaprenyl diphosphates. SlSPS (S. lycopersicum solanesyl diphosphate synthase) is targeted to the plastid and both solanesol and plastoquinone are associated with thylakoid membranes. A second gene [SlDPS (S. lycopersicum solanesyl decaprenyl diphosphate synthase)], encodes a long-chain prenyl diphosphate synthase with a different subcellular localization from SlSPS and can utilize geranyl, farnesyl or geranylgeranyl diphosphates in the synthesis of C45 and C50 prenyl diphosphates. When expressed in Escherichia coli, SlSPS and SlDPS extend the prenyl chain length of the endogenous ubiquinone to nine and ten isoprene units respectively. In planta, constitutive overexpression of SlSPS elevated the plastoquinone content of immature tobacco leaves. Virus-induced gene silencing showed that SlSPS is necessary for normal chloroplast structure and function. Plants silenced for SlSPS were photobleached and accumulated phytoene, whereas silencing SlDPS did not affect leaf appearance, but impacted on primary metabolism. The two genes were not able to complement silencing of each other. These findings indicate a requirement for two long-chain prenyl diphosphate synthases in the tomato.


Mitochondrion ◽  
2012 ◽  
Vol 12 (2) ◽  
pp. 248-257 ◽  
Author(s):  
Carly G.K. Ziegler ◽  
Min Peng ◽  
Marni J. Falk ◽  
Erzsebet Polyak ◽  
Elpida Tsika ◽  
...  

2011 ◽  
Vol 69 (2) ◽  
pp. 366-375 ◽  
Author(s):  
Anne‐Lise Ducluzeau ◽  
Yashitola Wamboldt ◽  
Christian G. Elowsky ◽  
Sally A. Mackenzie ◽  
Robert C. Schuurink ◽  
...  

2010 ◽  
Vol 87 (4) ◽  
pp. 1327-1334 ◽  
Author(s):  
Chikara Ohto ◽  
Masayoshi Muramatsu ◽  
Shusei Obata ◽  
Eiji Sakuradani ◽  
Sakayu Shimizu

Sign in / Sign up

Export Citation Format

Share Document