scholarly journals A promiscuous coenzyme A ligase provides benzoyl‐coenzyme A for xanthone biosynthesis in Hypericum

2020 ◽  
Vol 104 (6) ◽  
pp. 1472-1490
Author(s):  
Poonam Singh ◽  
Lutz Preu ◽  
Till Beuerle ◽  
David Kaufholdt ◽  
Robert Hänsch ◽  
...  
Keyword(s):  
Holzforschung ◽  
2012 ◽  
Vol 66 (7) ◽  
pp. 897-904 ◽  
Author(s):  
Keng-Hao Hsu ◽  
Wen-Ke Huang ◽  
Yan-Liang Lin ◽  
Shang-Tzen Chang ◽  
Fang-Hua Chu

Abstract There are numerous chemotypes of Cinnamomum osmophloeum in Taiwan, each of which generates an identical profile of volatile secondary metabolites. Cinnamaldehyde is the major constituent of C. osmophloeum and its quantity varies between strains. The cinnamaldehyde-type C. osmophloeum contains abundance of cinnamaldehyde, which is an economically important product, which can be gained from the leaf essential oil. Here, the genes involved in cinnamaldehyde biosynthesis have been investigated and four candidate genes, phenylalanine ammonia-lyase (CoPAL), 4-coumarate: coenzyme A ligase 1 and 4 (Co4CL1 and Co4CL4), and cinnamoyl-CoA reductase (CoCCR), were selected as potential molecular marker typical for the cinnamaldehyde chemotype. Cinnamaldehyde was increased in Co4CL1, Co4CL4, and CoCCR transgenic plants. The results showed that the cinnamaldehyde and non-cinnamaldehyde chemotypes can be distinguished by a single nucleotide polymorphism in the substrate binding pocket region of Co4CL4, at residue 378 of Co4CL4. This polymorphism could be used as a potential molecular marker for identification of strains of C. osmophloeum, which belong to high-yield cinnamaldehyde producer type. In addition, this finding might provide a suitable strategy for biosynthesis of bioactive metabolites in the future.


2007 ◽  
Vol 190 (4) ◽  
pp. 1247-1255 ◽  
Author(s):  
James P. Coleman ◽  
L. Lynn Hudson ◽  
Susan L. McKnight ◽  
John M. Farrow ◽  
M. Worth Calfee ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa.


2011 ◽  
Vol 77 (13) ◽  
pp. 4455-4464 ◽  
Author(s):  
M. H. Wilbrink ◽  
M. Petrusma ◽  
L. Dijkhuizen ◽  
R. van der Geize

ABSTRACTThe actinobacterial cholesterol catabolic gene cluster contains a subset of genes that encode β-oxidation enzymes with a putative role in sterol side chain degradation. We investigated the physiological roles of several genes, i.e.,fadD17,fadD19,fadE26,fadE27, andro04690DSM43269, by gene inactivation studies in mutant strain RG32 ofRhodococcus rhodochrousDSM43269. Mutant strain RG32 is devoid of 3-ketosteroid 9α-hydroxylase (KSH) activity and was constructed following the identification, cloning, and sequential inactivation of fivekshAgene homologs in strain DSM43269. We show that mutant strain RG32 is fully blocked in steroid ring degradation but capable of selective sterol side chain degradation. Except for RG32ΔfadD19, none of the mutants constructed in RG32 revealed an aberrant phenotype on sterol side chain degradation compared to parent strain RG32. Deletion offadD19in strain RG32 completely blocked side chain degradation of C-24 branched sterols but interestingly not that of cholesterol. The additional inactivation offadD17in mutant RG32ΔfadD19also did not affect cholesterol side chain degradation. Heterologously expressed FadD19DSM43269nevertheless was active toward steroid-C26-oic acid substrates. Our data identified FadD19 as a steroid-coenzyme A (CoA) ligase with an essentialin vivorole in the degradation of the side chains of C-24 branched-chain sterols. This paper reports the identification and characterization of a CoA ligase with anin vivorole in sterol side chain degradation. The high similarity (67%) between the FadD19DSM43269and FadD19H37Rvenzymes further suggests that FadD19H37Rvhas anin vivorole in sterol metabolism ofMycobacterium tuberculosisH37Rv.


2003 ◽  
Vol 185 (16) ◽  
pp. 4920-4929 ◽  
Author(s):  
Karola Schühle ◽  
Johannes Gescher ◽  
Ulrich Feil ◽  
Michael Paul ◽  
Martina Jahn ◽  
...  

ABSTRACT In the denitrifying member of the β-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were transformed to the acyl-CoA intermediate by a single CoA ligase (AMP forming) that preferentially acted on benzoate. This benzoate-CoA ligase was purified and characterized as a 57-kDa monomeric protein. Based on V max/Km , the specificity constant for 2-aminobenzoate was 15 times lower than that for benzoate; this may be the reason for the slower growth on 2-aminobenzoate. The benzoate-CoA ligase gene was cloned and sequenced and was found not to be part of the gene cluster encoding the general benzoyl-CoA pathway of anaerobic aromatic metabolism. Rather, it was located in a cluster of genes coding for a novel aerobic benzoate oxidation pathway. In line with this finding, the same CoA ligase was induced during aerobic growth with benzoate. A deletion mutant not only was unable to grow anaerobically on benzoate or 2-aminobenzoate, but also aerobic growth on benzoate was affected. This suggests that benzoate induces a single benzoate-CoA ligase. The product of benzoate activation, benzoyl-CoA, then acts as inducer of separate anaerobic or aerobic pathways of benzoyl-CoA, depending on whether oxygen is lacking or present.


Sign in / Sign up

Export Citation Format

Share Document