The amplification dynamics of MITEs and their impact on rice trait variability

2021 ◽  
Author(s):  
Raul Castanera ◽  
Pol Vendrell‐Mir ◽  
Amélie Bardil ◽  
Marie‐Christine Carpentier ◽  
Olivier Panaud ◽  
...  
Keyword(s):  

2021 ◽  
pp. 089020702110173
Author(s):  
Nadin Beckmann ◽  
Damian P Birney ◽  
Amirali Minbashian ◽  
Jens F Beckmann

The study aimed to investigate the status of within-person state variability in neuroticism and conscientiousness as individual differences constructs by exploring their (a) temporal stability, (b) cross-context consistency, (c) empirical links to selected antecedents, and (d) empirical links to longer term trait variability. Employing a sample of professionals ( N = 346) from Australian organisations, personality state data together with situation appraisals were collected using experience sampling methodology in field and repeatedly in lab-like settings. Data on personality traits, cognitive ability, and motivational mindsets were collected at baseline and after two years. Contingent (situation contingencies) and non-contingent (relative SD) state variability indices were relatively stable over time and across contexts. Only a small number of predictive effects of state variability were observed, and these differed across contexts. Cognitive ability appeared to be associated with state variability under lab-like conditions. There was limited evidence of links between short-term state and long-term trait variability, except for a small effect for neuroticism. Some evidence of positive manifold was found for non-contingent variability. Systematic efforts are required to further elucidate the complex pattern of results regarding the antecedents, correlates and outcomes of individual differences in state variability.



Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151806
Author(s):  
Edilvane Inês Zonta ◽  
Guilherme Krahl de Vargas ◽  
João André Jarenkow


2021 ◽  
Vol 288 (1953) ◽  
pp. 20210428
Author(s):  
Staffan Jacob ◽  
Delphine Legrand

Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.



Author(s):  
Rafaella Canessa ◽  
Liesbeth Brink ◽  
Alfredo Saldaña ◽  
Rodrigo S. Rios ◽  
Stephan Hättenschwiler ◽  
...  


Author(s):  
Javier Puy ◽  
Carlos P Carmona ◽  
Hana Dvořáková ◽  
Vít Latzel ◽  
Francesco de Bello

Abstract Background and Aims The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. Methods A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. Key Results Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. Conclusions A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.



2020 ◽  
Author(s):  
I C Richmond ◽  
S J Leroux ◽  
T R Heckford ◽  
E Vander Wal ◽  
M Rizzuto ◽  
...  

Abstract Aims Intraspecific variation in plant traits has important consequences for individual fitness and herbivore foraging. For plants, trait variability across spatial dimensions is well documented. However, temporal dimensions of trait variability are less well known, and may be influenced by seasonal differences in growing degree days, temperature, and precipitation. Here, we aim to quantify intraspecific temporal variation in traits and the underlying drivers for four commonly occurring boreal plant species. Methods We sampled the elemental and stoichiometric traits (%C, %N, %P, C:N, C:P, N:P) of four common browse species’ foliage across two years. Using a two-step approach, we first fitted generalized linear models (GzLM, n = 24) to the species’ elemental and stoichiometric traits, and tested if they varied across years. When we observed evidence for temporal variability, we fitted a second set of GzLMs (n = 8) with temperature, productivity, and moisture as explanatory variables. Important Findings We found no evidence of temporal variation for most of the elemental and stoichiometric traits of our four boreal plants, with two exceptions. Year was an important predictor for percent carbon across all four species (R 2 = 0.47 to 0.67) and for multiple elemental and stoichiometric traits in balsam fir (5/8, R 2 = 0.29 to 0.67). Thus, variation in percent carbon was related to interannual differences, more so than nitrogen and phosphorus, which are limiting nutrients in the boreal forest. These results also indicate that year may explain more variation in conifers’ stoichiometry than for deciduous plants due to life history differences. Growing degree days (GDD) was the most frequently occurring variable in the second round of models (8/8 times, R 2 = 0.21 to 0.41), suggesting that temperature is an important driver of temporal variation in these traits.



Ecography ◽  
2011 ◽  
Vol 34 (5) ◽  
pp. 856-863 ◽  
Author(s):  
Jan Lepš ◽  
Francesco de Bello ◽  
Petr Šmilauer ◽  
Jiří Doležal


2016 ◽  
Vol 12 (9) ◽  
pp. 20160584 ◽  
Author(s):  
Silva Uusi-Heikkilä ◽  
Kai Lindström ◽  
Noora Parre ◽  
Robert Arlinghaus ◽  
Josep Alós ◽  
...  

Changes in trait variability owing to size-selective harvesting have received little attention in comparison with changes in mean trait values, perhaps because of the expectation that phenotypic variability should generally be eroded by directional selection typical for fishing and hunting. We show, however, that directional selection, in particular for large body size, leads to increased body-size variation in experimentally harvested zebrafish ( Danio rerio ) populations exposed to two alternative feeding environments: ad libitum and temporarily restricted food availability. Trait variation may influence population adaptivity, stability and resilience. Therefore, rather than exerting selection pressures that favour small individuals, our results stress the importance of protecting large ones, as they can harbour a great amount of variation within a population, to manage fish stocks sustainably.



Sign in / Sign up

Export Citation Format

Share Document