Protein electrophoresis of non‐traditional species: A review

Author(s):  
Carolyn Cray
1986 ◽  
Vol 32 (7) ◽  
pp. 1425-1426 ◽  
Author(s):  
J D Baars ◽  
A J Lombarts

2021 ◽  
pp. 337-343
Author(s):  
Eugenie Mok ◽  
Ka Wai Kam ◽  
Anthony J. Aldave ◽  
Alvin L. Young

A 65-year-old man presented with bilateral, painless, progressive blurring of vision over 9 years. Slit-lamp examination revealed bilateral subepithelial corneal opacities in clusters located at the mid-periphery. Anterior segment optical coherence tomography, in vivo confocal microscopy (IVCM), serum protein electrophoresis, and molecular genetic testing were performed to evaluate the cause of corneal opacities. Anterior segment optical coherence tomography revealed a band-like, hyperreflective lesion in the Bowman layer and anterior stroma of both corneas. IVCM revealed hyperreflective deposits in the epithelium, anterior stroma, and endothelium. Serum protein electrophoresis identified the presence of paraproteins (immunoglobulin kappa), and molecular genetic testing revealed absence of mutations in the transforming growth factor beta-induced gene (<i>TGFBI</i>) and collagen type XVII alpha 1 gene (<i>COL17A1</i>). The ocular diagnosis of paraproteinemic keratopathy eventually led to a systemic diagnosis of monoclonal gammopathy of undetermined significance by our hematologist/oncologist. Paraproteinemic keratopathy is a rare differential diagnosis in patients with bilateral corneal opacities and therefore may be misdiagnosed as corneal dystrophy or neglected as scars. In patients with bilateral corneal opacities of unknown cause, serological examination, adjunct anterior segment imaging, and molecular genetic testing play a role in establishing the diagnosis.


2021 ◽  
pp. e00200
Author(s):  
J.M. Gastélum-Cano ◽  
J. Fragoso-Flores ◽  
V.M. Noffal-Nuño ◽  
M. Deffis-Court

2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S110-S110
Author(s):  
A Vijayanarayanan ◽  
K Inamdar ◽  
M Menon ◽  
P Kuriakose

Abstract Introduction/Objective Myeloma diagnosis by a pathologist requires 10% plasma cells (PC) or a biopsy proven plasmacytoma in addition to myeloma defining events. PC% &gt; 60% is a biomarker of malignancy under this definition. WHO allows for assesment of plasma cell percentage either by aspirate count or by CD138 immunohistochemistry (IHC). There is lack of consensus on aspirate smear adequacy for PC% estimation. Uneven distribution of plasma cells, hemodilution and/or patchy infiltration can lead to gross underestimation. We compared PC% by aspirate count and CD138 IHC and established corelation with serum protein electrophoresis (SPEP) values. Methods 67 myeloma cases were included after excluding cases with suboptimal or inadequate aspirate smears. Two hematopathologists evaluated the diagnostic marrow (therapy naive) for PC% by aspirate count and CD138 IHC on biopsy/clot section. Corresponding SPEP and Free light chain (FLC) values were obtained. Correlation coefficent was calculated using Pearson correlation coefficient (GraphPad Prism). Results The Ig subtypes included IgG (41/67) and IgA (17/67). 12 cases had available FLC values. Both average and median PC% by CD138 IHC was considerably higher (50%, 52%) compared to aspirate count (29%, 21%). However, PC% by aspirate smear count and CD138 IHC demonstrated a significant linear correlation (r=0.71, p60% by CD138 (and not by aspirate count). Conclusion CD138 IHC based PC% is consistently higher, nevertheless, statistically significant linear corelation is observed between aspirate count PC% and CD138 IHC. A significant linear correlation is observed between CD138 IHC and SPEP (IgG and IgA), however, no such correlation is observed with aspirate count. More cases were diagnosed as myeloma (11%) and higher propotion of cases (35%) had biomarker of malignancy i.e. PC% &gt;60% by CD138 IHC. Based on these findings, we propose estimation of PC% by CD138 immunostain be a recommended standard practice for better clinicopathologic and biologic correlation.


Pathology ◽  
2011 ◽  
Vol 43 ◽  
pp. S42 ◽  
Author(s):  
Jill Tate ◽  
Jill Tate ◽  
Peter Mollee ◽  
Grahame Caldwell ◽  
James Daly ◽  
...  

Crustaceana ◽  
1993 ◽  
Vol 65 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Barbara A. Stewart

AbstractThe use of protein electrophoretic data for determining species boundaries in amphipods is addressed. Analysis of published literature on genetic differentiation in amphipods showed that pairs of allopatric populations which have genetic identities (I) above a value of 0.85 probably represent intraspecific populations, whereas pairs of populations which have genetic identities below about 0.45 probably represent different species. It was recommended that if I values fall between 0.45 and 0.85, additional factors such as evidence of a lack of gene flow between the populations, and concordant morphological variation should be considered.


Author(s):  
M A Jenkins ◽  
M D Guerin

Capillary electrophoresis is a technique that can be automated for the separation of charged particles. By investigating suitable sample dilution and injection time and adhering to a strict washing procedure we have been able to quantify paraproteins in serum samples. This has enabled us to use the technique of capillary electrophoresis for the provision of serum protein electrophoresis in a routine clinical laboratory. We present our findings of 260 serum samples, which included 76 samples with paraproteins analysed by both capillary electrophoresis (EC) and high resolution agarose gel electrophoresis (HRAGE). CE was able to detect all the monoclonal bands detected by HRAGE, and, in particular, better able to detect IgA monoclonal bands occurring in the beta region. The major advantages of CE over HRAGE relate to the automated nature of CE with the elimination of the need for a densitometer.


Sign in / Sign up

Export Citation Format

Share Document