Pengurangan Pelepasan Emisi dari Pembakar Lapisan Terbendalir Menggunakan Tempurung Kelapa Sawit Sebagai Bahan Api

2012 ◽  
pp. 07-11
Author(s):  
Mohammad Nazri Mohd Jaafar ◽  
Rosyida Permatasari ◽  
Mohd Nazar Yakin Mohd Sobree

Emissions released from fluidized bed combustor (FBC) are highly dependent on several operating parameters, for example, temperature, staged air, excess air, fuel feed rate, and fuel properties. This paper presents results of experiments conducted using air staging technique on a laboratory scale fluidized bed rig, using palm shells as fuel oil and silica sand as an inert medium. Silica sand was used to ensure a sustainable fuel ignition and stable combustion occurs in the FBC. Emission of CO and NOx emissions, and temperatures along the height of the bed and flue were measured. The experimental results show that the axial temperature profile along the height was proportionally reduced with bed height of FBC. CO and NOx emissions obtained exhibit lower values for the air staged combustion. Pelepasan emisi dari pembakar lapisan terbendalir (FBC) adalah sangat bergantung kepada beberapa parameter kendalian sebagai contoh: suhu, udara berperingkat, udara berlebihan, kadar suapan bahan api, dan sifat bahan api. Kertas kerja ini mempersembahkan keputusan eksperimen yang dilaksanakan menggunakan teknik pemeringkatan udara ke atas rig lapisan terbendalir skala makmal, menggunakan tempurung kelapa sawit sebagai bahan api dan pasir silika sebagai bahan perantara lengai. Pasir silica telah digunakan untuk memastikan pencucuhan bahan api mampan dan pembakaran stabil berlaku di dalam FBC. Pelepasan gas emisi CO dan NOx serta suhu sepanjang ketinggian pembakar dan juga dalam serombong diukur. Keputusan ujikaji menunjukkan bahawa profil suhu paksi berkurangan secara berkadaran sepanjang ketinggian FBC. Pelepasan CO dan NOx yang diperolehi mempamerkan nilai yang lebih rendah untuk keadaan pembakaran dengan pemeringkatan udara.

1987 ◽  
Vol 109 (2) ◽  
pp. 58-65
Author(s):  
D. C. Hainley ◽  
M. Z. Haji-Sulaiman ◽  
S. Yavuzkurt ◽  
A. W. Scaroni

This paper presents operating experience with a fluidized bed combustor burning various coals. The primary focus is on the effect of relevant coal properties on combustor performance. Tests were carried out using anthracite, HVB and HVC bituminous and sub-bituminous A coals, and petroleum coke. Comparisons of the performance of the combustion on the various fuels are made. A two-stage fluidized bed combustor operating in a single-stage mode without recycle was employed. Experimental measurements included temperature, fuel feed rate, fluidization velocity and bed height. For some of the coals, bed agglomeration was found to occur. The results indicate that coal properties have an important effect upon the operation of the fluidized bed combustor.


Energy ◽  
2020 ◽  
Vol 194 ◽  
pp. 116756
Author(s):  
Lei Pang ◽  
Yingjuan Shao ◽  
Wenqi Zhong ◽  
Zheng Gong ◽  
Hao Liu

Author(s):  
Leming Cheng ◽  
Zhongyang Luo ◽  
Zhenglun Shi ◽  
Haixiao Zheng ◽  
Qinghui Wang ◽  
...  

Combustion behavior and SO2, NOx emissions of anthracite coal in a circulating fluidized bed are reported in this paper. Experimental researches were done on a 1 MWt circulating fluidized bed facility with a 0.31 m × 0.31 m cross section and 11.2 m height combustor. The anthracite coal with 6.28% volatile and 3.76% sulfur content burns steadily during the test. The bed was operated under different temperature, Ca/S ratio and excess air. A limestone containing 75% CaCO3 and 15% MgCO3 was used as the sulfur sorbent. Results show that the SO2 emission varies with operating bed temperature and more than 90% sulfur capture efficiency can be reached while Ca/S is about 3. With Rosemount Analytical NGA2000, N2O, NO and NO2 were also measured in the test. It was found the majority content of NOx was NO and the least was NO2. Those NOx emissions change highly with the excess air number.


Author(s):  
Tadaaki Shimizu ◽  
Takumi Nemoto ◽  
Hotaka Tsuboi ◽  
Toshio Shimoda ◽  
Syunji Ueno

Rice husk was burned in a bench-scale fluidized bed combustor (53 mm I.D. and 1.3m height) at 1123 K. Silica sand (average size 0.27 mm) was employed as conventional bed material. As an alternative bed material, a kind of porous alumina (average size 0.69 mm) was employed. Unburned gas (CO) emissions were suppressed by employing porous alumina as bed material. NOx emissions from the alumina bed were also suppressed in comparison to the sand bed. N2O emissions were nearly negligible (less than 10 ppm) for both bed materials. During combustion in the sand bed, sudden temperature rise up to 1450 K and increase in pressure drop across the bed were observed. Agglomerates were found in the bed material after the experiments. For the porous alumina bed, such agglomeration trouble did not occur. As conclusion, the present porous alumina was effective for both reduction of pollutants emissions and stable operation.


2015 ◽  
Vol 55 (4) ◽  
pp. 275 ◽  
Author(s):  
Pavel Skopec ◽  
Jan Hrdlička ◽  
Jan Opatřil ◽  
Jiří Štefanica

This paper presents experimental results of NO<sub>x</sub> emission measurements for combustion of two kinds of coal in a bubbling fluidized bed combustor. The tested fuels were Czech brown coal (CBC) and German young brown coal (GYC). These fuels have different nitrogen contents. The experiments were performed in the pilot scale BFB experimental unit with power output of 500 kW. The influence of several parameters on NO<sub>x</sub> formation are investigated in this paper. The parameters studied here include the effect of the nitrogen content in the fuel, the effect of the oxygen concentration in the bed, the effect of bed temperature, the effect of air staging, and the effect of fluidization velocity. Significantly different behaviour of the fuels was found. Although GYC has a lower nitrogen content than CBC, it is more reactive and produces higher NO<sub>x</sub> emissions. The biggest dependence of NO<sub>x</sub> production for CBC was found for the effects of air staging and fluidization velocity. As the fluidization velocity increases and the amount of secondary air decreases, there is an increase in NOx emissions. The oxygen concentration in the bed has the strongest effect on the NO<sub>x</sub> production of GYCs. With increasing oxygen concentration, the production of NO<sub>x</sub> also increases. On the basis of the NO<sub>x</sub> measurements, the N-NO conversion factor was calculated and the effect of the operating parameters on this conversion factor was investigated.


2014 ◽  
Vol 529 ◽  
pp. 32-35 ◽  
Author(s):  
Kuo Wei Chen

Disposal of such high-Oil content (up to 8%-23%) waste (Carbon ash) troubles the Waste tire resource plant. The Fluidized bed Gasifier medium (SiO2 in Common) possesses the strong ability of heat reservation that makes the high-oil content waste pre-drying. In addition, the utilization of absorbed-Molecular sieves can get rid of generated. It is applicable to direct gasification pyrolysis of Carbon ash, Due to its collective characteristics of pre-drying, pyrolysis and clean of pollutant. This research was devoted to study the feasibility for self-sustained combustion of high-oil content ZKHN Waste tire pyrolysis waste by Scrolling-Type Fluidized bed Gasifier. Research results indicate that the suitable for operating temperature is about 370°C with about 150 pa Pressure difference and 82.9% burning efficiency for self-sustained gasification of carbon ash. In other words, the oil content must be controlled below 26%. The volatile gases and organic solvents of participates can be neglected. The emission of CO was an Important issue, but can be suppressed by best regulation some factors that are operating temperature, axial temperature distribution, primary air & excess air. These factors influence the results of this study.


Sign in / Sign up

Export Citation Format

Share Document