Printed Document Integrity Verification Using Barcode

2014 ◽  
Vol 70 (1) ◽  
Author(s):  
Affandi Husain ◽  
Majid Bakhtiari ◽  
Anazida Zainal

Printed documents are still relevant in our daily life and information in it must be protected from threats and attacks such as forgery, falsification or unauthorized modification. Such threats make the document lose its integrity and authenticity. There are several techniques that have been proposed and used to ensure authenticity and originality of printed documents. But some of the techniques are not suitable for public use due to its complexity, hard to obtain special materials to secure the document and expensive. This paper discuss several techniques for printed document security such as watermarking and barcode as well as the usability of two dimensional barcode in document authentication and data compression with the barcode. A conceptual solution that are simple and efficient to secure the integrity and document sender’s authenticity is proposed that uses two dimensional barcode to carry integrity and authenticity information in the document. The information stored in the barcode contains digital signature that provides sender’s authenticity and hash value that can ensure the integrity of the printed document.  

2020 ◽  
Vol 4 ◽  
pp. 75-82
Author(s):  
D.Yu. Guryanov ◽  
◽  
D.N. Moldovyan ◽  
A. A. Moldovyan ◽  

For the construction of post-quantum digital signature schemes that satisfy the strengthened criterion of resistance to quantum attacks, an algebraic carrier is proposed that allows one to define a hidden commutative group with two-dimensional cyclicity. Formulas are obtained that describe the set of elements that are permutable with a given fixed element. A post-quantum signature scheme based on the considered finite non-commutative associative algebra is described.


Author(s):  
Huayin Si ◽  
Chang-Tsun Li

Although the development of multimedia processing techniques has facilitated the enrichment of information content, and the never-ending expansion of interconnected networks has constructed a solid infrastructure for information exchanges, meanwhile, the infrastructure and techniques have also smoothed the way for copyright piracy in virtual communities. As a result, the demand for intellectual property protection becomes apparent and exigent. In response to this challenge, digital watermarking has been proposed to serve this purpose. The idea of digital watermarking is to embed a small amount of secret information—the watermark—into the host digital productions, such as image and audio, so that it can be extracted later for the purposes of copyright assertion, authentication and content integrity verification, and so forth. Unlike traditional watermarks printed on paper, which are visible to human eyes, digital watermarks are usually invisible and can only be detected with the aid of a specially designed detector. One characteristic distinguishing digital watermarking from cryptography, which separates the digital signature from the raw data/content, is that digital watermarking embeds the signature in the content to be protected. The superiority of this characteristic is that while cryptography provides no protection after the content is decrypted, digital watermarking provides “intimate” protection, because the digital signature/secret information has become an inseparable constituent part of the content itself after embedding. Because of the very characteristic, digital watermarking requires no secret channel for communicating the digital signature that cryptography does. So in the last decade, digital watermarking has attracted numerous attention from researchers and is regarded as a promising technique in the field of information security. Various types of watermarking schemes have been developed for different applications. According to their natures, digital watermarking schemes could be classified into three categories: fragile watermarking, semi-fragile watermarking and robust watermarking. The schemes of the first two categories are developed for the purposes of multimedia authentication and content integrity verification, in which we expect the embedded watermark to be destroyed when attacks are mounted on its host media. More emphases of these schemes are placed on the capability of detecting and localizing forgeries and impersonations. The main difference between the two is that semi-fragile watermarking is tolerant to non-malicious operations, such as lossy compression within a certain compression ratio, while fragile watermarking is intolerant to any manipulations. Robust watermarking, on the other hand, is intended for the applications of copyright protection, wherein the watermarks should survive attacks aiming at weakening or erasing them provided the quality of the attacked content is still worth protecting. Therefore, the emphasis of robust watermarking schemes is placed on their survivability against attacks. This article is intended to focus on robust watermarking schemes for the application of copyright protection. See Li and Yang (2003) and Lin and Chang (2001) for more details about fragile and semi-fragile schemes.


2019 ◽  
Vol 54 (6) ◽  
Author(s):  
Israa Ezzat Salem ◽  
Adil M. Salman ◽  
Maad M. Mijwil

The current study aims to examine a general overview of the application of hash functions in cryptography and study the relationships between cryptographic hash functions and uses of the digital signature. Functions of the cryptographic hash are an important tool applied in several sections of data security, and application of hash function is common and used for various purposes such as File Integrity Verification, Key Derivation, Time stamping, Password Hashing, Rootkit Detection and Digital Signature. Digital Signature is a code that is linked electronically with the document including the sender's identity. Therefore, the digital signature is of high value in verifying digital messages or documents. Cryptographic hash functions do not present without mathematics. The success of computer science is attributed to mathematics; in other words, it is because of mathematical science, that computer science was understood and could be explained to all. The study aims to teach the reader hash functions and its applications such as digital signature and to show in details some hash functions and their designing.


2008 ◽  
pp. 3788-3793
Author(s):  
Huayin Si ◽  
Chang-Tsun Li

Although the development of multimedia processing techniques has facilitated the enrichment of information content, and the never-ending expansion of interconnected networks has constructed a solid infrastructure for information exchanges, meanwhile, the infrastructure and techniques have also smoothed the way for copyright piracy in virtual communities. As a result, the demand for intellectual property protection becomes apparent and exigent. In response to this challenge, digital watermarking has been proposed to serve this purpose. The idea of digital watermarking is to embed a small amount of secret information—the watermark—into the host digital productions, such as image and audio, so that it can be extracted later for the purposes of copyright assertion, authentication and content integrity verification, and so forth. Unlike traditional watermarks printed on paper, which are visible to human eyes, digital watermarks are usually invisible and can only be detected with the aid of a specially designed detector. One characteristic distinguishing digital watermarking from cryptography, which separates the digital signature from the raw data/content, is that digital watermarking embeds the signature in the content to be protected. The superiority of this characteristic is that while cryptography provides no protection after the content is decrypted, digital watermarking provides “intimate” protection, because the digital signature/secret information has become an inseparable constituent part of the content itself after embedding. Because of the very characteristic, digital watermarking requires no secret channel for communicating the digital signature that cryptography does. So in the last decade, digital watermarking has attracted numerous attention from researchers and is regarded as a promising technique in the field of information security. Various types of watermarking schemes have been developed for different applications. According to their natures, digital watermarking schemes could be classified into three categories: fragile watermarking, semi-fragile watermarking and robust watermarking. The schemes of the first two categories are developed for the purposes of multimedia authentication and content integrity verification, in which we expect the embedded watermark to be destroyed when attacks are mounted on its host media. More emphases of these schemes are placed on the capability of detecting and localizing forgeries and impersonations. The main difference between the two is that semi-fragile watermarking is tolerant to non-malicious operations, such as lossy compression within a certain compression ratio, while fragile watermarking is intolerant to any manipulations. Robust watermarking, on the other hand, is intended for the applications of copyright protection, wherein the watermarks should survive attacks aiming at weakening or erasing them provided the quality of the attacked content is still worth protecting. Therefore, the emphasis of robust watermarking schemes is placed on their survivability against attacks. This article is intended to focus on robust watermarking schemes for the application of copyright protection. See Li and Yang (2003) and Lin and Chang (2001) for more details about fragile and semi-fragile schemes.


Sign in / Sign up

Export Citation Format

Share Document