Comparison of two metamodeling approaches for sensitivity analysis of a geological disposal model

Author(s):  
Sabine M. Spiessl ◽  
Sergei Kucherenko

<p>Probabilistic methods of higher order sensitivity analysis provide a possibility for identifying parameter interactions by means of sensitivity indices. Better understanding of parameter interactions may help to better quantify uncertainties of repository models, which can behave in a highly nonlinear, non-monotonic or even discontinuous manner. Sensitivity indices can efficiently be estimated by the Random-Sampling High Dimensional Model Representation (RS-HDMR) metamodeling approach. This approach is based on truncating the ANOVA-HDMR expansions up to the second order, while the truncated terms are then approximated by orthonormal polynomials. By design, the sensitivity index of total order (SIT) in this method is approximated as the sum of the indices of first order (SI1’s) plus all corresponding indices of second order (SI2’s) for a considered parameter. RS-HDMR belongs to a wider class of methods known as polynomial chaos expansion (PCE). PCE methods are based on Wiener’s homogeneous chaos theory published in 1938. It is a widely used approach in metamodeling. Usually only a few terms are relevant in the PCE structure. The Bayesian Sparse PCE method (BSPCE) makes use of sparse PCE. Using BSPCE, SI1 and SIT can be estimated. In this work we used the SobolGSA software [1] which contains both the RS-HDMR and BSPCE methods.</p><p>We have analysed the sensitivities of a model for a generic LILW repository in a salt mine using both the RS-HDMR and the BSPCE approach. The model includes a barrier in the near field which is chemically dissolved (corroded) over time by magnesium-containing brine, resulting in a sudden significant change of the model behaviour and usually a rise of the radiation exposure. We investigated the model with two sets of input parameters: one with 6 parameters and one with 5 additional ones (LILW6 and LILW11 models, respectively). For the time-dependent analysis, 31 time points were used.</p><p>The SI1 indices calculated with both approaches agree well with those obtained from the well-established and reliable first-order algorithm EASI [2] in most investigations. The SIT indices obtained from the BSPCE method seem to increase with the number of simulations used to build the metamodel. The SIT time curves obtained from the RS-HDMR approach with optimal choice of the polynomial coefficients agree well with the ones from the BSPCE approach only for relatively low numbers of simulations. As, in contrast to RS-HDMR, the BSPCE approach takes account of all orders of interaction, this may be a hint for the existence of third- or higher-order effects.</p><p><strong>Acknowledgements</strong></p><p>The work was financed by the German Federal Ministry for Economic Affairs and Energy (BMWi). We would also like to thank Dirk-A. Becker for his constructive feedback.</p><p><strong>References</strong></p><p>[1]         S. M. Spiessl, S. Kucherenko, D.-A. Becker, O. Zaccheus, Higher-order sensitivity analysis of a final repository model with discontinuous behaviour. Reliability Engineering and System Safety, doi: https://doi.org/10.1016/j.ress.2018.12.004, (2018).</p><p>[2]          E. Plischke, An effective algorithm for computing global sensitivity indices (EASI). Reliability Engineering and System Safety, 95: 354–360, (2010).</p>

2021 ◽  
Author(s):  
Sabine M. Spiessl ◽  
Dirk-A. Becker ◽  
Sergei Kucherenko

<p>Due to their highly nonlinear, non-monotonic or even discontinuous behavior, sensitivity analysis of final repository models can be a demanding task. Most of the output of repository models is typically distributed over several orders of magnitude and highly skewed. Many values of a probabilistic investigation are very low or even zero. Although this is desirable in view of repository safety it can distort the evidence of sensitivity analysis. For the safety assessment of the system, the highest values of outputs are mainly essential and if those are only a few, their dependence on specific parameters may appear insignificant. By applying a transformation, different model output values are differently weighed, according to their magnitude, in sensitivity analysis. Probabilistic methods of higher-order sensitivity analysis, applied on appropriately transformed model output values, provide a possibility for more robust identification of relevant parameters and their interactions. This type of sensitivity analysis is typically done by decomposing the total unconditional variance of the model output into partial variances corresponding to different terms in the ANOVA decomposition. From this, sensitivity indices of increasing order can be computed. The key indices used most often are the first-order index (SI1) and the total-order index (SIT). SI1 refers to the individual impact of one parameter on the model and SIT represents the total effect of one parameter on the output in interactions with all other parameters. The second-order sensitivity indices (SI2) describe the interactions between two model parameters.</p><p>In this work global sensitivity analysis has been performed with three different kinds of output transformations (log, shifted and Box-Cox transformation) and two metamodeling approaches, namely the Random-Sampling High Dimensional Model Representation (RS-HDMR) [1] and the Bayesian Sparse PCE (BSPCE) [2] approaches. Both approaches are implemented in the SobolGSA software [3, 4] which was used in this work. We analyzed the time-dependent output with two approaches for sensitivity analysis, i.e., the pointwise and generalized approaches. With the pointwise approach, the output at each time step is analyzed independently. The generalized approach considers averaged output contributions at all previous time steps in the analysis of the current step. Obtained results indicate that robustness can be improved by using appropriate transformations and choice of coefficients for the transformation and the metamodel.</p><p>[1] M. Zuniga, S. Kucherenko, N. Shah (2013). Metamodelling with independent and dependent inputs. Computer Physics Communications, 184 (6): 1570-1580.</p><p>[2] Q. Shao, A. Younes, M. Fahs, T.A. Mara (2017). Bayesian sparse polynomial chaos expansion for global sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 318: 474-496.</p><p>[3] S. M. Spiessl, S. Kucherenko, D.-A. Becker, O. Zaccheus (2018). Higher-order sensitivity analysis of a final repository model with discontinuous behaviour. Reliability Engineering and System Safety, doi: https://doi.org/10.1016/j.ress.2018.12.004.</p><p>[4] SobolGSA software (2021). User manual https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/.</p>


2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.


2013 ◽  
Vol 78 (3) ◽  
pp. 837-872 ◽  
Author(s):  
Łukasz Czajka

AbstractWe show a model construction for a system of higher-order illative combinatory logic thus establishing its strong consistency. We also use a variant of this construction to provide a complete embedding of first-order intuitionistic predicate logic with second-order propositional quantifiers into the system of Barendregt, Bunder and Dekkers, which gives a partial answer to a question posed by these authors.


1994 ◽  
Vol 116 (4) ◽  
pp. 741-750 ◽  
Author(s):  
C. H. Venner

This paper addresses the development of efficient numerical solvers for EHL problems from a rather fundamental point of view. A work-accuracy exchange criterion is derived, that can be interpreted as setting a limit to the price paid in terms of computing time for a solution of a given accuracy. The criterion can serve as a guideline when reviewing or selecting a numerical solver and a discretization. Earlier developed multilevel solvers for the EHL line and circular contact problem are tested against this criterion. This test shows that, to satisfy the criterion a second-order accurate solver is needed for the point contact problem whereas the solver developed earlier used a first-order discretization. This situation arises more often in numerical analysis, i.e., a higher order discretization is desired when a lower order solver already exists. It is explained how in such a case the multigrid methodology provides an easy and straightforward way to obtain the desired higher order of approximation. This higher order is obtained at almost negligible extra work and without loss of stability. The approach was tested out by raising an existing first order multilevel solver for the EHL line contact problem to second order. Subsequently, it was used to obtain a second-order solver for the EHL circular contact problem. Results for both the line and circular contact problem are presented.


1998 ◽  
Vol 5 (3) ◽  
pp. 305-308 ◽  
Author(s):  
Tsuneaki Miyahara

The difference between first-order and second-order coherence of synchrotron radiation is discussed in relation to how they can be measured and how they affect the noise characteristics of future free-electron lasers.


Author(s):  
Mona Simion

According to KK Compatibilism, the unassertability in the high-stakes contextualist cases can be explained in terms of the subjects lack of higher-order knowledge: although, strictly speaking, all that is needed for proper action—assertion included—is first-order knowledge, when the stakes are high, we tend to find people who act without knowing that they meet the condition for proper action blameworthy for so doing. This chapter argues that (1) the view misidentifies the epistemic deficit that is explanatorily salient in contextualist cases, in that the absence of second-order knowledge is not a difference maker, and (2) on closer look, the account requires normative finessing for extensional adequacy.


Author(s):  
Jan De Houwer ◽  
Tom Beckers

Abstract. De Houwer and Beckers (in press , Experiment 1) recently demonstrated that ratings about the relation between a target cue T2 and an outcome are higher when training involves CT1+ and T1T2+ followed by C+ trials than when training involves CT1+ and T1T2+ followed by C- trials. We replicated this study but now explicitly asked participants to rate the causal status of the cues both before and after the C+ or C- trials. Results showed that causal ratings for T2 were significantly higher after C+ trials than before C+ trials and that T2 received significantly lower ratings after C- trials than before C- trials. The results thus provide the first evidence for higher-order unovershadowing and higher-order backward blocking. In addition, the ratings for T1 revealed that first-order backward blocking (i.e., decrease in ratings for T1 as the result of C+ trials) was stronger than first-order unovershadowing (i.e., increase in ratings for T1 as the result of C- trials).


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yishang Zhang ◽  
Yongshou Liu ◽  
Xufeng Yang

The moment-independent importance measure (IM) on the failure probability is important in system reliability engineering, and it is always influenced by the distribution parameters of inputs. For the purpose of identifying the influential distribution parameters, the parametric sensitivity of IM on the failure probability based on local and global sensitivity analysis technology is proposed. Then the definitions of the parametric sensitivities of IM on the failure probability are given, and their computational formulae are derived. The parametric sensitivity finds out how the IM can be changed by varying the distribution parameters, which provides an important reference to improve or modify the reliability properties. When the sensitivity indicator is larger, the basic distribution parameter becomes more important to the IM. Meanwhile, for the issue that the computational effort of the IM and its parametric sensitivity is usually too expensive, an active learning Kriging (ALK) solution is established in this study. Two numerical examples and two engineering examples are examined to demonstrate the significance of the proposed parametric sensitivity index, as well as the efficiency and precision of the calculation method.


2010 ◽  
Vol 138 (12) ◽  
pp. 4497-4508 ◽  
Author(s):  
William C. Skamarock ◽  
Maximo Menchaca

Abstract The finite-volume transport scheme of Miura, for icosahedral–hexagonal meshes on the sphere, is extended by using higher-order reconstructions of the transported scalar within the formulation. The use of second- and fourth-order reconstructions, in contrast to the first-order reconstruction used in the original scheme, results in significantly more accurate solutions at a given mesh density, and better phase and amplitude error characteristics in standard transport tests. The schemes using the higher-order reconstructions also exhibit much less dependence of the solution error on the time step compared to the original formulation. The original scheme of Miura was only tested using a nondeformational time-independent flow. The deformational time-dependent flow test used to examine 2D planar transport in Blossey and Durran is adapted to the sphere, and the schemes are subjected to this test. The results largely confirm those generated using the simpler tests. The results also indicate that the scheme using the second-order reconstruction is most efficient and its use is recommended over the scheme using the first-order reconstruction. The second-order reconstruction uses the same computational stencil as the first-order reconstruction and thus does not create any additional parallelization issues.


Author(s):  
A. Chowdury ◽  
A. Ankiewicz ◽  
N. Akhmediev

We find that the Hirota equation admits breather-to-soliton conversion at special values of the solution eigenvalues. This occurs for the first-order, as well as higher orders, of breather solutions. An analytic expression for the condition of the transformation is given and several examples of transformations are presented. The values of these special eigenvalues depend on two free parameters that are present in the Hirota equation. We also find that higher order breathers generally have complicated quasi-periodic oscillations along the direction of propagation. Various breather solutions are considered, including the particular case of second-order breathers of the nonlinear Schrödinger equation.


Sign in / Sign up

Export Citation Format

Share Document