scholarly journals On the problem of existence in principal value of a Calderón–Zygmund operator on a space of non‐homogeneous type

2019 ◽  
Vol 121 (1) ◽  
pp. 152-176
Author(s):  
Benjamin Jaye ◽  
Tomás Merchán
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
N. G. Gracia ◽  
V. Mateu

Abstract We present results for SCET and bHQET matching coefficients and jet functions in the large-β0 limit. Our computations exactly predict all terms of the form $$ {\alpha}_s^{n+1}{n}_f^n $$ α s n + 1 n f n for any n ≥ 0, and we find full agreement with the coefficients computed in the full theory up to $$ \mathcal{O}\left({\alpha}_s^4\right) $$ O α s 4 . We obtain all-order closed expressions for the cusp and non-cusp anomalous dimensions (which turn out to be unambiguous) as well as matrix elements (with ambiguities) in this limit, which can be easily expanded to arbitrarily high powers of αs using recursive algorithms to obtain the corresponding fixed-order coefficients. Examining the poles laying on the positive real axis of the Borel-transform variable u we quantify the perturbative convergence of a series and estimate the size of non-perturbative corrections. We find a so far unknown u = 1/2 renormalon in the bHQET hard factor Hm that affects the normalization of the peak differential cross section for boosted top quark pair production. For ambiguous series the so-called Borel sum is defined with the principal value prescription. Furthermore, one can assign an ambiguity based on the arbitrariness of avoiding the poles by contour deformation into the positive or negative imaginary half-plane. Finally, we compute the relation between the pole mass and four low-scale short distance masses in the large-β0 approximation (MSR, RS and two versions of the jet mass), work out their μ- and R-evolution in this limit, and study how their implementation improves the convergence of the position-space bHQET jet function, whose three-loop coefficient in full QCD is numerically estimated.


Author(s):  
Santiago Boza ◽  
María J. Carro

The work of Coifman and Weiss concerning Hardy spaces on spaces of homogeneous type gives, as a particular case, a definition of Hp(ZN) in terms of an atomic decomposition.Other characterizations of these spaces have been studied by other authors, but it was an open question to see if they can be defined, as it happens in the classical case, in terms of a maximal function or via the discrete Riesz transforms.In this paper, we give a positive answer to this question.


2000 ◽  
Vol 44 (01) ◽  
pp. 14-32
Author(s):  
Ming-Chung Fang

A three-dimensional method to analyze the motions of a ship running in waves is presented, including the effects of the steady-flow potential. Basically, the general formulations are based on the source distribution technique by which the ship hull surface is regarded as the assembly of many panels. The present study includes three algorithms for treating the corresponding Green function:the Hess & Smith algorithm for the part of simple source I/r,the complex plane contour integral of the Shen & Farell algorithm for the double integral of steady flow, andthe series expansions of the Telste & Noblesse algorithm for the Cauchy principal value integral of unsteady flow. The study reveals that the effect of steady flow on ship motions is generally small, but it still cannot be neglected in some cases, especially for the ship running in oblique waves. The effect also depends on the fore-aft configuration of the ship. The results predicted by the present method are found to be in fairly good agreement with existing experiments and other theories.


Sign in / Sign up

Export Citation Format

Share Document